Monday 12.12 [55 marks]

Let
$$f\left(x
ight)=rac{4x-5}{x^{2}-3x+2}~x
eq1, x
eq2$$

1a. Express f(x) in partial fractions.

Markscheme $f(x) = \frac{4x-5}{(x-1)(x-2)} \equiv \frac{A}{x-1} + \frac{B}{x-2}$ *M1A1* $\Rightarrow 4x - 5 \equiv A(x-2) + B(x-1)$ *M1A1* $x = 1 \Rightarrow A = 1$ $x = 2 \Rightarrow B = 3$ *A1A1* $f(x) = \frac{1}{x-1} + \frac{3}{x-2}$ *[6 marks]*

1b. Use part (a) to show that f(x) is always decreasing.

1c.

 $\int\limits_{0}^{0}$ [4 marks] Use part (a) to find the exact value of $^{-1}f(x)dx$, giving the answer in the form $\ln q, \ q \in \mathbb{Q}.$

[6 marks]

Markscheme

$$\int_{-1}^{0} \int_{x-1}^{1} \frac{1}{x-1} + \frac{3}{x-2} dx = [\ln |x-1| + 3\ln |x-2|]_{-1}^{0} \text{ MIA1}$$

$$= (3\ln 2) - (\ln 2 + 3\ln 3) = 2\ln 2 - 3\ln 3 = \ln \frac{4}{27} \text{ A1A1}$$
[4 marks]

Consider the series $\ln x + p \ln x + rac{1}{3} \ln x + \ldots$, where $x \in \mathbb{R}, \; x > 1$ and $p \in \mathbb{R}, \; p \neq 0.$

Consider the case where the series is geometric.

2a. Show that $p=\pm rac{1}{\sqrt{3}}.$ [2 marks]

Markscheme

EITHER

attempt to use a ratio from consecutive terms **M1**

$$\frac{p\ln x}{\ln x} = \frac{\frac{1}{3}\ln x}{p\ln x} \quad \text{OR} \quad \frac{1}{3}\ln x = (\ln x)r^2 \quad \text{OR} \quad p\ln x = \ln x \left(\frac{1}{3p}\right)$$

Note: Candidates may use $\ln x^1 + \ln x^p + \ln x^{\frac{1}{3}} \dots$ and consider the powers of x in geometric sequence

Award **M1** for $\frac{p}{1} = \frac{\frac{1}{3}}{p}$.

OR

$$r=p$$
 and $r^2=rac{1}{3}$ $M1$

THEN

$$p^2=rac{1}{3}$$
 or $r=\pmrac{1}{\sqrt{3}}$ all $p=\pmrac{1}{\sqrt{3}}$ and $p=\pmrac{1}{\sqrt{3}}$

Note: Award *MOAO* for $r^2 = \frac{1}{3}$ or $p^2 = \frac{1}{3}$ with no other working seen.

[2 marks]

2b. Given that p>0 and $S_\infty=3+\sqrt{3}$, find the value of x.

Markscheme

$$\frac{\ln x}{1-\frac{1}{\sqrt{3}}} (=3+\sqrt{3})$$
 (A1)
 $\ln x = 3 - \frac{3}{\sqrt{3}} + \sqrt{3} - \frac{\sqrt{3}}{\sqrt{3}}$ OR $\ln x = 3 - \sqrt{3} + \sqrt{3} - 1$ ($\Rightarrow \ln x = 2$)
A1
 $x = e^2$ A1
[3 marks]

Now consider the case where the series is arithmetic with common difference d.

2c. Show that $p=rac{2}{3}$.

Markscheme

METHOD 1

attempt to find a difference from consecutive terms or from u_2 **M1**

correct equation **A1** $p \ln x - \ln x = \frac{1}{3} \ln x - p \ln x$ OR $\frac{1}{3} \ln x = \ln x + 2(p \ln x - \ln x)$

Note: Candidates may use $\ln x^1 + \ln x^p + \ln x^{\frac{1}{3}} + \dots$ and consider the powers of x in arithmetic sequence.

Award **M1A1** for $p-1=rac{1}{3}-p$

$$2p\ln x = rac{4}{3}\ln x \ \left(\Rightarrow 2p = rac{4}{3}
ight)$$
 A1
 $p = rac{2}{3}$ AG

METHOD 2

attempt to use arithmetic mean $u_2=rac{u_1+u_3}{2}$ $oldsymbol{M1}$

$$p\ln x = rac{\ln x + rac{1}{3}\ln x}{2}$$
 Al $2p\ln x = rac{4}{3}\ln x \ \left(\Rightarrow 2p = rac{4}{3}
ight)$ Al $p = rac{2}{3}$ AG

METHOD 3 attempt to find difference using u_3 M1 $\frac{1}{3}\ln x = \ln x + 2d \ (\Rightarrow d = -\frac{1}{3}\ln x)$

 $u_2 = \ln x + \frac{1}{2} \left(\frac{1}{3} \ln x - \ln x \right)$ OR $p \ln x - \ln x = -\frac{1}{3} \ln x$ **A1** $p \ln x = \frac{2}{3} \ln x$ **A1** $p = \frac{2}{3}$ **AG**

2e. The sum of the first n terms of the series is $-3 \ln x$. Find the value of n.

[6 marks]

Markscheme

METHOD 1

 $S_n = \frac{n}{2} \left[2 \ln x + (n-1) \times \left(-\frac{1}{3} \ln x \right) \right]$ attempt to substitute into S_n and equate to $-3 \ln x$ (M1) $\frac{n}{2} \left[2 \ln x + (n-1) \times \left(-\frac{1}{3} \ln x \right) \right] = -3 \ln x$ correct working with S_n (seen anywhere) (A1) $\frac{n}{2} \left[2 \ln x - \frac{n}{3} \ln x + \frac{1}{3} \ln x \right]$ OR $n \ln x - \frac{n(n-1)}{6} \ln x$ OR $\frac{n}{2} \left(\ln x + \left(\frac{4-n}{3} \right) \ln x \right)$ correct equation without $\ln x$ A1 $\frac{n}{2} \left(\frac{7}{3} - \frac{n}{3} \right) = -3$ OR $n - \frac{n(n-1)}{6} = -3$ or equivalent Note: Award as above if the series $1 + p + \frac{1}{3} + \dots$ is considered leading to $\frac{n}{2} \left(\frac{7}{3} - \frac{n}{3} \right) = -3$.

attempt to form a quadratic = 0(M1) $n^2 - 7n - 18 = 0$ attempt to solve their quadratic(M1)(n-9)(n+2)=0n=9A1

METHOD 2

listing the first 7 terms of the sequence (A1) $\ln x + \frac{2}{3}\ln x + \frac{1}{3}\ln x + 0 - \frac{1}{3}\ln x - \frac{2}{3}\ln x - \ln x + \dots$ recognizing first 7 terms sum to 0 M1 8th term is $-\frac{4}{3}\ln x$ (A1) 9th term is $-\frac{5}{3}\ln x$ (A1) sum of 8th and 9th term = $-3\ln x$ (A1) n = 9 A1

[6 marks]

3. Consider the graphs of $y=rac{x^2}{x-3}$ and $y=m\,(x+3)$, $m\in\mathbb{R}.$ [5 marks]

Find the set of values for m such that the two graphs have no intersection points.

Markscheme

METHOD 1

sketching the graph of $y=rac{x^2}{x-3}$ ($y=x+3+rac{9}{x-3}$) igsim M1

the (oblique) asymptote has a gradient equal to 1

and so the maximum value of m is 1 **R1**

consideration of a straight line steeper than the horizontal line joining (-3, 0) and (0, 0) **M1**

so m > 0 **R1** hence $0 < m \le 1$ **A1**

METHOD 2

attempting to eliminate y to form a quadratic equation in x – **M1**

EITHER

attempting to solve -4(m-1)(-9m) < 0 for m – **M1**

OR

attempting to solve x^2 < 0 *ie* $rac{9m}{m-1}$ < 0~(m
eq 1) for m \qquad M1

THEN

 $\Rightarrow 0 < m < 1$ **A1** a valid reason to explain why m = 1 gives no solutions *eg* if m = 1, $(m-1) x^2 - 9m = 0 \Rightarrow -9 = 0$ and so $0 < m \le 1$ **R1**

[5 marks]

The function f is defined by $f(x) = rac{4x+1}{x+4}$, where $x \in \mathbb{R}, \; x
eq -4$. For the graph of f4a. write down the equation of the vertical asymptote. [1 mark] Markscheme x = -4**A1** [1 mark] 4b. find the equation of the horizontal asymptote. [2 marks] Markscheme attempt to substitute into $y=rac{a}{c}~$ OR table with large values of x~ OR sketch of f showing asymptotic behaviour (M1) y = 4**A1** [2 marks]

4c. Find $f^{-1}(x)$.

[4 marks]

[4 marks]

4d. Using an algebraic approach, show that the graph of f^{-1} is obtained by [4 marks] a reflection of the graph of f in the y-axis followed by a reflection in the x-axis.

Markschemereflection in y-axis given by
$$f(-x)$$
 (M1) $f(-x) = \frac{-4x+1}{-x+4}$ (A1)reflection of their $f(-x)$ in x-axis given by $-f(-x)$ accept "now $-f(x)$ "M1 $(-f(-x)=) - \frac{-4x+1}{-x+4}$ $= \frac{-4x+1}{x-4}$ OR $\frac{4x-1}{-x+4}$ A1 $= \frac{1-4x}{x-4}$ ($= f^{-1}(x)$) AGNote: If the candidate attempts to show the result using a particular coordinate on the graph of f rather than a general coordinate on the graph of f, where appropriate, award marks as follows:MOA0 for eg $(2,3) \rightarrow (-2,3)$ MOA0 for $(-2,3) \rightarrow (-2,-3)$ [4 marks]

The graphs of f and f^{-1} intersect at x = p and x = q, where p < q.

4e. Find the value of p and the value of q.

```
[2 marks]
```

Markscheme

attempt to solve $f(x) = f^{-1}(x)$ using graph or algebraically (M1) p = -1 AND q = 1 A1

Note: Award (M1)A0 if only one correct value seen.

[2 marks]

4f. Hence, find the area enclosed by the graph of f and the graph of f^{-1} . [3 marks]

```
Markscheme

attempt to set up an integral to find area between f and f^{-1} (M1)

\int_{-1}^{1} \left(\frac{4x+1}{x+4} - \frac{1-4x}{x-4}\right) dx (A1)

= 0.675231...

= 0.675 A1

[3 marks]
```

A company produces bags of sugar whose masses, in grams, can be modelled by a normal distribution with mean 1000 and standard deviation 3.5. A bag of sugar is rejected for sale if its mass is less than 995 grams.

5a. Find the probability that a bag selected at random is rejected. [2 marks]

```
Markscheme

Note: In this question, do not penalise incorrect use of strict inequality signs.

Let X = mass of a bag of sugar

evidence of identifying the correct area (M1)

P(X < 995) = 0.0765637...

= 0.0766 A1

[2 marks]
```

5b. Estimate the number of bags which will be rejected from a random [1 mark] sample of 100 bags.

Markscheme
Note: In this question, do not penalise incorrect use of strict inequality signs.
Let $X=$ mass of a bag of sugar
0.0766 imes100
pprox 8 A1
Note: Accept 7.66.
[1 mark]

5c. Given that a bag is not rejected, find the probability that it has a mass [3 marks] greater than 1005 grams.

Markscheme Note: In this question, do not penalise incorrect use of strict inequality signs. Let X = mass of a bag of sugar recognition that $P(X > 1005 | X \ge 995)$ is required (M1) $\frac{P(X \ge 995 \cap X > 1005)}{P(X \ge 995)}$ $\frac{P(X > 1005)}{P(X \ge 995)}$ (A1) $\frac{0.0765637...}{1 - 0.0765637...} (= \frac{0.0765637...}{0.923436...})$ = 0.0829 A1 [3 marks]

International Baccalaureate® Baccalauréat International Bachillerato Internacional

Printed for 2 SPOLECZNE LICEUM