Monday 12.12 [55 marks]

Let
$$f(x)=rac{4x-5}{x^2-3x+2} \ x
eq 1, x
eq 2.$$

1a. Express f(x) in partial fractions.

[6 marks]

Use part (a) to find the exact value of $^{-1}f(x)dx$, giving the answer in the form $\ln q, \;\; q \in \mathbb{Q}.$

Consider the series $\ln x + p \ln x + rac{1}{3} \ln x + \ldots$, where $x \in \mathbb{R}, \; x > 1$ and $p \in \mathbb{R}, \; p
eq 0.$

Consider the case where the series is geometric.

2a. Show that $p=\pm rac{1}{\sqrt{3}}.$ [2 marks]

2b. Given that p>0 and $S_\infty=3+\sqrt{3}$, find the value of x.

[3 marks]

Now consider the case where the series is arithmetic with common difference d.

^{C.} Show that $p=rac{2}{3}$.	[3 marks]

2d. Write down d in the form $k\ln x$, where $k\in\mathbb{Q}.$

[1 mark]

2e. The sum of the first n terms of the series is $-3 \ln x$. Find the value of n.

^{3.} Consider the graphs of $y = \frac{x^2}{x-3}$ and y = m(x+3), $m \in \mathbb{R}$. [5 marks] Find the set of values for m such that the two graphs have no intersection points.

The function f is defined by $f(x){=}\,rac{4x{+}1}{x{+}4}$, where $x\in\mathbb{R},\;x
eq-4.$

For the graph of f

4a. write down the equation of the vertical asymptote.[1 mark]

4d. Using an algebraic approach, show that the graph of f^{-1} is obtained by [4 marks] a reflection of the graph of f in the y-axis followed by a reflection in the x-axis.

The graphs of f and f^{-1} intersect at x = p and x = q, where p < q.

4e. Find the value of p and the value of q.

[2 marks]

4f. Hence, find the area enclosed by the graph of f and the graph of f^{-1} . [3 marks]

A company produces bags of sugar whose masses, in grams, can be modelled by a normal distribution with mean 1000 and standard deviation $3.\,5.$ A bag of sugar is rejected for sale if its mass is less than 995 grams.

5a. Find the probability that a bag selected at random is rejected. [2 marks]

5b. Estimate the number of bags which will be rejected from a random [1 mark] sample of 100 bags.

5c. Given that a bag is not rejected, find the probability that it has a mass [3 marks] greater than 1005 grams.

© International Baccalaureate Organization 2022 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional® **International Baccalauréat** International Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM