Paper 3 (11.12) [27 marks]

This question will investigate power series, as an extension to the Binomial Theorem for negative and fractional indices.

A power series in x is defined as a function of the form

 $f(x)=a_0+a_1x+a_2x^2+a_3x^3+\dots$ where the $a_i\in\mathbb{R}.$

It can be considered as an infinite polynomial.

^{1a.} Expand $\left(1+x\right)^5$ using the Binomial Theorem.

[2 marks]

This is an example of a power series, but is only a finite power series, since only a finite number of the a_i are non-zero.

1b. Consider the power series $1 - x + x^2 - x^3 + x^4 - \ldots$ [4 marks] By considering the ratio of consecutive terms, explain why this series is equal to $(1 + x)^{-1}$ and state the values of x for which this equality is true.

.....

1c. Differentiate the equation obtained part (b) and hence, find the first four [2 marks] terms in a power series for $(1 + x)^{-2}$.

1d. Repeat this process to find the first four terms in a power series for $(2 \text{ marks})^{-3}$.

1e. Hence, by recognising the pattern, deduce the first four terms in a power series for $(1+x)^{-n}$, $n\in\mathbb{Z}^+.$

[3 marks]

We will now attempt to generalise further.

Suppose $(1+x)^q, q \in \mathbb{Q}$ can be written as the power series $a_0+a_1x+a_2x^2+a_3x^3+\ldots$

1f. By substituting x = 0, find the value of a_0 . [1 mark]

1g. By differentiating both sides of the expression and then substituting [2 marks]x = 0, find the value of a_1 .

1h. Repeat this procedure to find a_2 and a_3 .

[4 marks]

1i. Hence, write down the first four terms in what is called the Extended [1 mark] Binomial Theorem for $(1+x)^q, q \in \mathbb{Q}$.

1j. Write down the power series for $\frac{1}{1+x^2}$.

[2 marks]

1k. Hence, using integration, find the power series for $\arctan x$, giving the [4 marks] first four non-zero terms.

© International Baccalaureate Organization 2022 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM

International Baccalaureate® Baccalauréat International Bachillerato Internacional