Paper 3 (3.12) [30 marks]

A **Gaussian integer** is a complex number, z, such that z = a + bi where $a, b \in \mathbb{Z}$. In this question, you are asked to investigate certain divisibility properties of Gaussian integers.

Consider two Gaussian integers, $\alpha=3+4{\rm i}$ and $\beta=1-2{\rm i}$, such that $\gamma=lphaeta$ for some Gaussian integer γ .

1a. Find γ .

[2 marks]

Now consider two Gaussian integers, $lpha=3+4{
m i}$ and $\gamma=11+2{
m i}.$

The norm of a complex number z, denoted by N(z), is defined by $N(z) = |z|^2$. For example, if z = 2 + 3i then $N(2 + 3i) = 2^2 + 3^2 = 13$.

1c. On an Argand diagram, plot and label all Gaussian integers that have a *[2 marks]* norm less than 3.

```
. . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . .
```

1d. Given that $lpha=a+b{
m i}$ where $a,\ b\in\mathbb{Z}$, show that $N(lpha)=a^2+b^2.$ [1 mark]

A **Gaussian prime** is a Gaussian integer, z, that **cannot** be expressed in the form $z = \alpha\beta$ where α , β are Gaussian integers with $N(\alpha)$, $N(\beta) > 1$.

1e. By expressing the positive integer $n = c^2 + d^2$ as a product of two [3 marks] Gaussian integers each of norm $c^2 + d^2$, show that n is not a Gaussian prime.

The positive integer 2 is a prime number, however it is not a Gaussian prime.

1f. Verify that 2 is not a Gaussian prime.

[2 marks]

1g. Write down another prime number of the form c^2+d^2 that is not a Gaussian prime and express it as a product of two Gaussian integers.

[2 marks]

Let $\alpha, \ \beta$ be Gaussian integers.

1h. Show that $N(\alpha\beta) = N(\alpha)N(\beta)$.

[6 marks]

The result from part (h) provides a way of determining whether a Gaussian integer is a Gaussian prime.

1i. Hence show that $1+4\mathrm{i}$ is a Gaussian prime.

[3 marks]

1j. Use proof by contradiction to prove that a prime number, p, that is not [6 marks] of the form $a^2 + b^2$ is a Gaussian prime.

.

Printed for 2 SPOLECZNE LICEUM