Name: Group 2 Result:

1. (3 points)

The temperature T, in $^{\circ}C$, in Warsaw on a summer day t hours after midnight have been recorded and displayed in the table below:

t	0	2	4	6	8	10	12	14	16	18	20	22
T	17.1	15.7	15.6	17.0	19.4	22.2	24.5	26.0	25.9	24.5	22.2	19.5

- a) Use technology to find a *sine* model for the temperature on a Warsaw summer day.
- b) Use your model to estimate the temperature at 9:30 on a summer day in Warsaw.

2. (7 points)

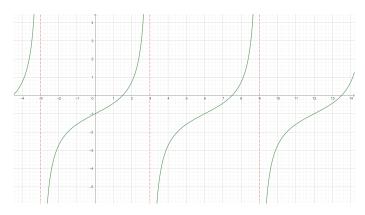
The temperature in an industrial fridge is given by the equation:

$$T(t) = 3 - 0.5\sin\left(\frac{\pi}{15}t\right)$$

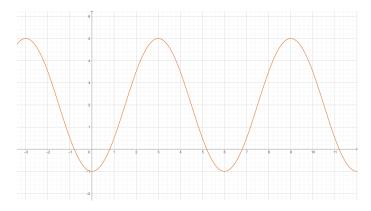
where T is temperature measured in ${}^{\circ}C$ and t is time measured in minutes since the thermostat is turned on.

a) Sketch the graph of T for $0 \le t \le 60$.

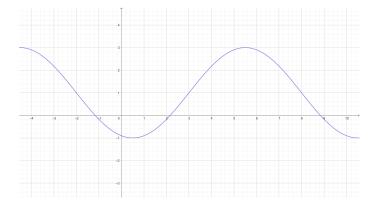
b) State the maximum temperature in the fridge and t at which it occurs for the first time.


c) Find the temperature in the fridge 2 minutes after the thermostat is turned on.

d) Calculate how long during the first 60 minutes will the temperature in the fridge be below $3.1^{\circ}C$.


(6 points) 3.

Find the constants A, B, C and D (where appropriate) given the graphs of the functions:


a)
$$f(x) = \tan(Bx) + D$$

b)
$$g(x) = A\cos(Bx) + D$$

c)
$$h(x) = A\sin(B(x-C)) + D$$

