1. The following diagram shows graph of $f(x) = A\sin(B(x-C)) + D$, with $0 \le x \le 10$.

The graph has a maximum at (7,5) and a minimum at (3,1)

a) Find A, B, C and D, given that C > 0. [2 points]

b) Solve the inequality f(x) < 2. [2 points]

c) Write down a sequence of transformations that maps the graph of $y = \sin x$ into the graph of y = f(x). [2 points]

Test 2

2.

a) Show that:

$$\csc(x) - \frac{\cos x}{\tan x} \equiv \sin x$$

where $x \neq \frac{k\pi}{2}, k \in \mathbb{Z}$.

b) Hence, or otherwise solve the equation:

$$\csc(2\theta) - \frac{\cos(2\theta)}{\tan(2\theta)} = \frac{1}{2}$$

for $0 \leq \theta \leq 2\pi$. Give your answers in terms of π .

c) Solve the equation:

$$\cos^2 \alpha - 3\cos \alpha - 1 = \sin^2 \alpha$$

for $0 \leq \alpha \leq 2\pi$. Give your answers in terms of π .

[2 points]

 $[2 \ points]$

 $[2 \ points]$

3. Given that $0 < \alpha < \pi < \beta < 2\pi$ and $\cos \alpha = -\frac{1}{3}$ and $\tan \beta = 2$. Without calculating α and β , find the exact value of the expression: [6 points]

$$\frac{\sin(2\pi-\alpha)+\cos(\pi+\beta)}{\tan\frac{\pi}{6}}$$

4. Tomasz starts at point A and walks 4.5 km at a bearing of 025 to reach point B. He then walks another 3.5 km at a bearing of 100 and arrives at point C.

a) Find the direct distance from A to C .	$[2 \ points]$
b) Find the bearing of A from C .	[2 points]

b) Find the bearing of A from C.

c) Due to limited endurance Tomasz can only walk another 2 km. Find the area of the sector within the triangle ABC that Tomasz can reach. [2 points]

December

16.2

November

18.5

October

18.9

Month

Precipitation [mm]

July

42.2

Month	January	February	March	April	May	June	
Precipitation [mm]	14.2	16.2	16.8	22.5	34.1	39.2	

August

34.8

5.	The average precipitat	sion (in mn	i) in	Otwock for	or each	month is	given in	the table	e below:
----	------------------------	---------------	-------	------------	---------	----------	----------	-----------	----------

a) Use the maximum and minimum precipitation and the periodicity of the seasons to create a *cosine* model for P(t) in the form $P_1(t) = A\cos(B(t-C)) + D$, where t = 1 corresponds to January, t = 2 to February etc. [2 points]

September

25.3

b) Use technology to find sine model for $P_2(t)$. [2 points]

Another model for average precipitation in Otwock was developed based on daily data:

$$P_3(t) = 31 - 19\cos\left(\frac{2\pi}{365}(t - 13)\right)$$

where t = 1 corresponds to 1st of January, t = 2 to 2nd of January etc.

c) Use the third model to find the maximum precipitation in Otwock and the day at which it occurs. [2 points]