Differential equations [155 marks]

Consider the differential equation

$$rac{\mathrm{d}\,y}{\mathrm{d}\,x} = fig(rac{y}{x}ig), x > 0$$

1a. Use the substitution y = vx to show that $\int \frac{\mathrm{d}v}{f(v)-v} = \ln x + C$ where C [3 marks] is an arbitrary constant.

The curve y=f(x) for x>0 has a gradient function given by $rac{\mathrm{d}\,y}{\mathrm{d}\,x}=rac{y^2+3xy+2x^2}{x^2}.$

The curve passes through the point $(1,\;-1).$

- 1b. By using the result from part (a) or otherwise, solve the differential [9 marks] equation and hence show that the curve has equation $y = x(\tan(\ln x)-1)$.
- ^{1c.} The curve has a point of inflexion at (x_1, y_1) where $e^{-\frac{\pi}{2}} < x_1 < e^{\frac{\pi}{2}}$. [6 marks] Determine the coordinates of this point of inflexion.
- ^{1d.} Use the differential equation $\frac{dy}{dx} = \frac{y^2 + 3xy + 2x^2}{x^2}$ to show that the points of ^[4 marks] zero gradient on the curve lie on two straight lines of the form y = mx where the values of m are to be determined.

Consider the differential equation $x^2 \frac{\mathrm{d} y}{\mathrm{d} x} = y^2 - 2x^2$ for x > 0 and y > 2x. It is given that y = 3 when x = 1.

2a. Use Euler's method, with a step length of 0.1, to find an approximate [4 marks] value of y when x = 1.5.

2b. Use the substitution y = vx to show that $x \frac{\mathrm{d}v}{\mathrm{d}x} = v^2 - v - 2$. [3 marks]

²C. By solving the differential equation, show that $y = rac{8x + x^4}{4 - x^3}$. [10 marks]

2d. Find the actual value of y when x=1.5.

^{2e.} Using the graph of $y = \frac{8x+x^4}{4-x^3}$, suggest a reason why the approximation [1 mark] given by Euler's method in part (a) is not a good estimate to the actual value of y at x = 1.5.

3. Solve the differential equation $\frac{d y}{d x} = \frac{\ln 2x}{x^2} - \frac{2y}{x}$, x > 0, given that y = 4 [7 marks] at $x = \frac{1}{2}$. Give your answer in the form y = f(x).

The function f has a derivative given by $f'(x) = rac{1}{x(k-x)}, x \in \mathbb{R}, x
eq o, x
eq k$ where k is a positive constant.

^{4a.} The expression for f'(x) can be written in the form $\frac{a}{x} + \frac{b}{k-x}$, where [3 marks] $a, b \in \mathbb{R}$. Find a and b in terms of k.

4b. Hence, find an expression for f(x).

Consider P, the population of a colony of ants, which has an initial value of 1200. The rate of change of the population can be modelled by the differential equation $\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{P(k-P)}{5k}$, where t is the time measured in days, $t \ge 0$, and k is the upper bound for the population.

4c. By solving the differential equation, show that $P = \frac{1200k}{(k-1200)e^{-\frac{t}{5}}+1200}$. [8 marks]

At t = 10 the population of the colony has doubled in size from its initial value.

4d. Find the value of k, giving your answer correct to four significant figures. [3 marks]

[3 marks]

[1 mark]

⁴e. Find the value of t when the rate of change of the population is at its [3 marks] maximum.

Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{y-x}{y+x}$, where x, y > 0. It is given that y = 2 when x = 1. [9 marks] 5a. Solve the differential equation, giving your answer in the form f(x, y) = 0.5b. The graph of y against x has a local maximum between x = 2 and x = 3 [4 marks] . Determine the coordinates of this local maximum. 5c. Show that there are no points of inflexion on the graph of y against x. [4 marks] Consider the differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x^2 + y^2 - xy}{x^2}$, with y = 2 when x = 1. 6a. Use Euler's method, with step length h=0.1, to find an approximate [5 marks] value of y when x = 1.4. ^{6b.} Express m^2-2m+4 in the form $\left(m-a
ight)^2+b$, where $a,b\in\mathbb{Z}.$ [1 mark] 6c. Solve the differential equation, for x > 0, giving your answer in the [10 marks] form y = f(x). 6d. Sketch the graph of y = f(x) for $1 \leqslant x \leqslant 1.4$. [1 mark] 6e. With reference to the curvature of your sketch in part (c)(iii), and without *[2 marks]* further calculation, explain whether you conjecture f(1.4) will be less than, equal to, or greater than your answer in part (a). Consider the differential equation $2xyrac{\mathrm{d}y}{\mathrm{d}x}=y^2-x^2$, where x>0.7a. Solve the differential equation and show that a general solution is [11 marks] $x^2 + y^2 = cx$ where c is a positive constant.

⁷b. Prove that there are two horizontal tangents to the general solution [5 marks] curve and state their equations, in terms of c.

Consider the differential equation $rac{\mathrm{d}y}{\mathrm{d}x}=1+rac{y}{x}$, where x
eq 0.

8a. Given that y(1) = 1, use Euler's method with step length h = 0.25 to [4 marks] find an approximation for y(2). Give your answer to two significant figures.

^{8b.} Solve the equation
$$\frac{dy}{dx} = 1 + \frac{y}{x}$$
 for $y(1) = 1$. [6 marks]

8c. Find the percentage error when y(2) is approximated by the final [3 marks] rounded value found in part (a). Give your answer to two significant figures.

Consider the differential equation $x \frac{\mathrm{d}y}{\mathrm{d}x} - y = x^p + 1$ where $x \in \mathbb{R}, \, x \neq 0$ and p is a positive integer, p > 1.

- 9a. Solve the differential equation given that y = -1 when x = 1. Give your [8 marks] answer in the form y = f(x).
- 9b. Show that the *x*-coordinate(s) of the points on the curve y = f(x) where [2 marks] $\frac{dy}{dx} = 0$ satisfy the equation $x^{p-1} = \frac{1}{p}$.
- 9c. Deduce the set of values for p such that there are two points on the [2 marks] curve y = f(x) where $\frac{dy}{dx} = 0$. Give a reason for your answer.

Consider the differential equation $rac{\mathrm{d}y}{\mathrm{d}x} + rac{x}{x^2+1}y = x$ where y=1 when x=0.

10a. Show that $\sqrt{x^2 + 1}$ is an integrating factor for this differential equation. [4 marks]

10b. Solve the differential equation giving your answer in the form y=f(x).[6 marks]

© International Baccalaureate Organization 2023

International Baccalaureate ® - Baccalauréat International ® - Bachillerato Internacional ®

