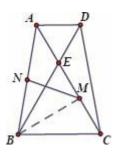


Example 1.4.16 ABCD is an isosceles trapezium where AD //BC and AB = CD. Its diagonals AC, BD intersect at E and $\angle AED = 60^{\circ}$. Let M, N be the midpoints of CE, AB respectively. Show that $MN = \frac{1}{2}AB$.

Proof. Refer to the diagram on the below. Since *ABCD* is an isosceles trapezium with AB = CD, we must have $\angle ABC = \angle BCD$. Hence, $\triangle ABC \cong \angle DCB$ (S.A.S.), which implies $\angle BCE = \angle CBE$.



Since $\angle BEC = \angle AED = 60^\circ$, $\triangle BCE$ must be an equilateral triangle. Since *M* is the midpoint of *CE*, we must have *BM* \perp *CE*.

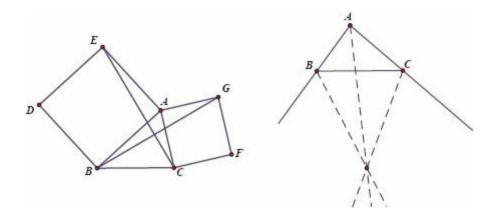
Since *N* is the midpoint of *AB*, *MN* is the median on the hypotenuse of $\triangle AMB$ and hence, $MN = \frac{1}{2}AB$ (Theorem 1.4.6).

1.5 Exercises

1. In a right angled triangle $\triangle ABC$ where $\angle A = 90^\circ$, *P* is a point on *BC*. If *AP* = *BP*, show that *BP* = *CP*, i.e., *P* is the midpoint of *BC*.

2. Given $\triangle ABC$ where $\angle B = 2 \angle C$, *D* is a point on *BC* such that *AD* bisects $\angle A$. Show that AC = AB + BD.

3. Refer to the left diagram below. Given $\triangle ABC$, draw squares *ABDE* and *ACFG* outwards from *AB*, *AC* respectively. Show that *BG* = *CE* and *BG* \perp *CE*.



4. Refer to the right diagram above. Show that in $\triangle ABC$, the angle bisector of $\angle A$, the exterior angles bisectors of $\angle B$ and $\angle C$ are concurrent (i.e., they pass through the same point).

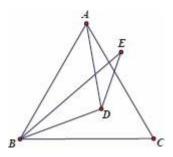
Note: This point is called the ex-center of $\triangle ABC$ opposite A. One may see that each triangle has three ex-centers.

5. Given $\triangle ABC$, J_1 and J_2 are the ex-centers (refer to Exercise 1.4) opposite *B* and *C* respectively. Let *I* be the incenter of $\triangle ABC$. Show that $J_1J_2 \perp AI$.

6. Let *ABCD* be a square. *E*, *F* are points on *BC*, *CD* respectively and $\angle EAF = 45^\circ$. Show that EF = BE + DF.

7. In the acute angled triangle $\triangle ABC$, $BD \perp AC$ at D and $CE \perp AB$ at E. BL and CE intersect at Q. P is on BD extended such that BP = AC. If CQ = AB, find $\angle AQP$.

8. Refer to the diagram on the below. $\triangle ABC$ is an equilateral triangle. *D* is a point inside $\triangle ABC$ such that AD = BD Choose *E* such that BE = AB and *BD* bisects $\angle CBE$. Find $\angle BED$.



9. Let *I* be the incenter of $\triangle ABC$. *A* lextended intersects *BC* at *D*. Draw *IH* \perp *BC* at *H*. Show that $\angle BID = \angle CIH$.

10. Given a quadrilateral *ABCD*, the diagonal *AC* bisects both $\angle A$ and $\angle C$. If *AB* extended and *DC* extended intersect at *E*, and *AD* extended and *BC* extended intersect at *F*, show that for any point *P* on line *AC*, *PE* = *PF*.

11. In $\triangle ABC$, AB = AC and D is a point on AB. Let O be the circumcenter of $\triangle BCD$ and I be the incenter of $\triangle ACD$. Show that A, I, O are collinear.

12. Given a quadrilateral *ABCD* where *BD* bisects $\angle B$, *P* is a point on *BC* such that *PD* bisects $\angle APC$. Show that $\angle BDP + \angle PAD = 90^{\circ}$.

13. ABCD is a quadrilateral where AD //BC. Show that if BC - AB = AD - CL then ABCD is a parallelogram.

14. Given a square ABCD, ℓ_1 is a straight line intersecting AB, AD at E, F respectively and ℓ_2 is a straight line intersecting BC, CD at G, H respectively. EH, FG intersect at I. If $\ell_1 // \ell_2$ and the distance between ℓ_1 , ℓ_2 is equal to AB, find $\angle GIH$.