Exercises 25.01 [112 marks]

1a. Find the roots of the equation $w^3=8\mathrm{i}$, $w\in\mathbb{C}$. Give your answers in Cartesian form.

[4 marks]

1b. One of the roots w_1 satisfies the condition $\mathrm{Re}\,(w_1)=0.$

[3 marks]

Given that $w_1=rac{z}{z-\mathrm{i}}$, express z in the form $a+b\mathrm{i}$, where a, $b\in\mathbb{Q}$.

2a. Express $-3+\sqrt{3}\mathrm{i}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$, where r>0 and $-\pi<\theta\leqslant\pi$.

[5 marks]

Let the roots of the equation $z^3 = -3 + \sqrt{3}i$ be u, v and w.

2b. Find u, v and w expressing your answers in the form $r\mathrm{e}^{\mathrm{i}\theta}$, where r>0 [5 marks] and $-\pi<\theta\leqslant\pi$.

On an Argand diagram, u, v and w are represented by the points U, V and W respectively.

2c. Find the area of triangle UVW.

[4 marks]

2d. By considering the sum of the roots u, v and w, show that $\cos\frac{5\pi}{18}+\cos\frac{7\pi}{18}+\cos\frac{17\pi}{18}=0.$

[4 marks]

- ^{3a.} Use the binomial theorem to expand $(\cos \theta + i \sin \theta)^4$. Give your answer^[3 marks] in the form a + bi where a and b are expressed in terms of $\sin \theta$ and $\cos \theta$.
- 3b. Use de Moivre's theorem and the result from part (a) to show that $\cot 4\theta = \frac{\cot^4\theta 6\cot^2\theta + 1}{4\cot^3\theta 4\cot\theta}.$

[5 marks]

3c. Use the identity from part (b) to show that the quadratic equation $x^2-6x+1=0$ has roots $\cot^2\frac{\pi}{8}$ and $\cot^2\frac{3\pi}{8}$.

[5 marks]

3d. Hence find the exact value of $\cot^2 \frac{3\pi}{8}$.

[4 marks]

3e. Deduce a quadratic equation with integer coefficients, having roots $\csc^2\frac{\pi}{8}$ and $\csc^2\frac{3\pi}{8}$.

[3 marks]

Consider the equation $(z-1)^3={\rm i},\ z\in\mathbb{C}$. The roots of this equation are ω_1 , ω_2 and ω_3 , where ${\rm Im}(\omega_2)>0$ and ${\rm Im}(\omega_3)<0$.

4a. Verify that $\omega_1=1+\mathrm{e}^{\mathrm{i}\frac{\pi}{6}}$ is a root of this equation.

[2 marks]

4b. Find ω_2 and ω_3 , expressing these in the form $a+\mathrm{e}^{\mathrm{i}\theta}$, where $a\in\mathbb{R}$ and $\ \ [4\ marks]$ $\theta>0.$

The roots ω_1 , ω_2 and ω_3 are represented by the points A, B and C respectively on an Argand diagram.

4c. Plot the points A, B and C on an Argand diagram.

[4 marks]

4d. Find AC.

[3 marks]

Consider the equation $(z-1)^3=\mathrm{i} z^3,\ z\in\mathbb{C}.$

^{4e.} By using de Moivre's theorem, show that $\alpha=\frac{1}{1-\mathrm{e}^{\mathrm{i}\frac{\pi}{6}}}$ is a root of this equation.

[3 marks]

4f. Determine the value of $\mathrm{Re}(\alpha)$.

[6 marks]

Consider the complex numbers $z=2\big(\cos\frac{\pi}{5}+\mathrm{i}\,\sin\frac{\pi}{5}\big)$ and $w=8\big(\cos\frac{2k\pi}{5}-\mathrm{i}\,\sin\frac{2k\pi}{5}\big)$, where $k\in\mathbb{Z}^+$.

5a. Find the modulus of zw.

[1 mark]

5b. Find the argument of zw in terms of k.

[2 marks]

Suppose that $zw \in \mathbb{Z}$.

5c. Find the minimum value of k.

[3 marks]

5d. For the value of k found in part (i), find the value of zw.

[1 mark]

6a. Find the roots of $z^{24}=1$ which satisfy the condition $0<\arg{(z)}<\frac{\pi}{2}$, expressing your answers in the form $re^{\mathrm{i}\theta}$, where $r,\,\theta\in\mathbb{R}^+$.

[5 marks]

Let S be the sum of the roots found in part (a).

6b. Show that Re S = Im S.

[4 marks]

- 6c. By writing $\frac{\pi}{12}$ as $\left(\frac{\pi}{4}-\frac{\pi}{6}\right)$, find the value of $\cos\frac{\pi}{12}$ in the form $\frac{\sqrt{a}+\sqrt{b}}{c}$ [3 marks], where a, b and c are integers to be determined.
- ^{6d.} Hence, or otherwise, show that $S=\frac{1}{2}\Big(1+\sqrt{2}\Big)\Big(1+\sqrt{3}\Big)$ $\Big(1+\mathrm{i}\Big)$.

[4 marks]

7a. Solve $2\sin(x+60^\circ)=\cos(x+30^\circ),\ 0^\circ\leqslant x\leqslant 180^\circ.$

[5 marks]

7b. Show that $\sin 105^\circ + \cos 105^\circ = \frac{1}{\sqrt{2}}$.

[3 marks]

Let $z = 1 - \cos 2\theta - i \sin 2\theta, z \in \mathbb{C}, 0 \leqslant \theta \leqslant \pi$.

- 7c. Find the modulus and argument of z in terms of θ . Express each answer $[9 \ marks]$ in its simplest form.
- 7d. Hence find the cube roots of z in modulus-argument form.

[5 marks]

Printed for 2 SPOLECZNE LICEUM