Exercises 25.01 [112 marks]

1a. Find the roots of the equation $w^3 = 8i$, $w \in \mathbb{C}$. Give your answers in [4 marks] Cartesian form.

1b. One of the roots w_1 satisfies the condition $\operatorname{Re}(w_1) = 0.$ [3 marks]

Given that $w_1=rac{z}{z-\mathrm{i}}$, express z in the form $a+b\mathrm{i}$, where a, $b\in\mathbb{Q}.$

Let the roots of the equation $z^3 = -3 + \sqrt{3}{
m i}$ be u, v and w.

2b. Find u, v and w expressing your answers in the form $re^{i\theta}$, where r > 0 [5 marks] and $-\pi < \theta \leqslant \pi$.

. On an Argand diagram, $u,\,v$ and w are represented by the points U, V and W respectively.

2c. Find the area of triangle UVW.

[4 marks]

[4 marks]

2d. By considering the sum of the roots u, v and w, show that

 $\cos \frac{5\pi}{18} + \cos \frac{7\pi}{18} + \cos \frac{17\pi}{18} = 0.$

^{3a.} Use the binomial theorem to expand $(\cos \theta + i \sin \theta)^4$. Give your answer^[3 marks] in the form a + bi where a and b are expressed in terms of $\sin \theta$ and $\cos \theta$.

3b. Use de Moivre's theorem and the result from part (a) to show that [5 marks] $\cot 4\theta = \frac{\cot^4\theta - 6\cot^2\theta + 1}{4\cot^3\theta - 4\cot\theta}$.

3c. Use the identity from part (b) to show that the quadratic equation $x^2-6x+1=0$ has roots $\cot^2rac{\pi}{8}$ and $\cot^2rac{3\pi}{8}$.

. 3d. Hence find the exact value of $\cot^2 \frac{3\pi}{8}$.

3e. Deduce a quadratic equation with integer coefficients, having roots [3 marks] $\cos^2 \frac{\pi}{8}$ and $\csc^2 \frac{3\pi}{8}$.

Consider the equation $(z-1)^3 = \mathrm{i}, \ z \in \mathbb{C}$. The roots of this equation are ω_1 , ω_2 and ω_3 , where $\mathrm{Im}(\omega_2) > 0$ and $\mathrm{Im}(\omega_3) < 0$.

4a. Verify that $\omega_1 = 1 + {
m e}^{{
m i} {\pi\over 6}}$ is a root of this equation. [2 marks]

4b. Find ω_2 and ω_3 , expressing these in the form $a + \mathrm{e}^{\mathrm{i} heta}$, where $a \in \mathbb{R}$ and $\ \ [4 \ marks]$ heta > 0.

The roots $\omega_1,\,\omega_2$ and ω_3 are represented by the points $A,\,B$ and C respectively on an Argand diagram.

4c. Plot the points $\boldsymbol{A},\,\boldsymbol{B}$ and \boldsymbol{C} on an Argand diagram. [4 marks]

Consider the equation $\left(z-1
ight)^3={
m i} z^3,\;z\in\mathbb{C}.$

4e. By using de Moivre's theorem, show that $\alpha = \frac{1}{1-e^{i\frac{\pi}{6}}}$ is a root of this [3 marks] equation.

Consider the complex numbers $z = 2\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$ and $w = 8\left(\cos\frac{2k\pi}{5} - i\sin\frac{2k\pi}{5}\right)$, where $k \in \mathbb{Z}^+$.

5a. Find the modulus of zw.

[1 mark]

Suppose that $zw \in \mathbb{Z}$.

5c. Find the minimum value of k.

5d. For the value of k found in part (i), find the value of zw.

[1 mark]

[3 marks]

6a. Find the roots of $z^{24} = 1$ which satisfy the condition $0 < \arg(z) < \frac{\pi}{2}$ [5 marks], expressing your answers in the form $re^{i\theta}$, where $r, \theta \in \mathbb{R}^+$.

. .

Let *S* be the sum of the roots found in part (a).

6b. Show that $\operatorname{Re} S = \operatorname{Im} S$.

1	
B <u>y</u>	y writing $\frac{\pi}{12}$ as $\left(\frac{\pi}{4}-\frac{\pi}{6}\right)$, find the value of $\cos\frac{\pi}{12}$ in the form $\frac{\sqrt{a}+\sqrt{b}}{c}$ [3 mark where a,b and c are integers to be determined.
Bː	y writing $\frac{\pi}{12}$ as $\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$, find the value of $\cos \frac{\pi}{12}$ in the form $\frac{\sqrt{a} + \sqrt{b}}{c}$ [3 mark where a, b and c are integers to be determined.
B <u>`</u> , \	y writing $\frac{\pi}{12}$ as $\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$, find the value of $\cos \frac{\pi}{12}$ in the form $\frac{\sqrt{a} + \sqrt{b}}{c}$ [3 mark where a, b and c are integers to be determined.
B'	y writing $\frac{\pi}{12}$ as $\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$, find the value of $\cos \frac{\pi}{12}$ in the form $\frac{\sqrt{a} + \sqrt{b}}{c}$ [3 mark where a, b and c are integers to be determined.
B <u>?</u>	where a, b and c are integers to be determined.

^{6d.} Hence, or otherwise, show that $S = \frac{1}{2} \left(1 + \sqrt{2} \right) \left(1 + \sqrt{3} \right) (1 + i).$

7a. Solve $2\sin(x+60^\circ)=\cos(x+30^\circ),\ 0^\circ\leqslant x\leqslant 180^\circ.$

[5 marks]

7b. Show that $\sin 105^\circ + \cos 105^\circ = rac{1}{\sqrt{2}}.$

7c. Find the modulus and argument of z in terms of θ . Express each answer [9 marks] in its simplest form.

.

© International Baccalaureate Organization 2023 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM