Further trig review [107 marks]

1. Find the least positive value of x for which $\cos\left(\frac{x}{2} + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$.

[5 marks]

Markscheme

Note: Award *M1* for attempting to solve $\frac{x}{2} + \frac{\pi}{3} = \frac{\pi}{4}, \frac{7\pi}{4}(,...)$

 $\frac{x}{2}+\frac{\pi}{3}=\frac{\pi}{4}\Rightarrow x<0$ and so $\frac{\pi}{4}$ is rejected *(R1)*

 $\frac{x}{2} + \frac{\pi}{3} = 2\pi - \frac{\pi}{4} \left(= \frac{7\pi}{4} \right)$ A.

 $x=rac{17\pi}{6}$ (must be in radians) $m{A1}$

[5 marks]

Let $\sin \theta = \frac{\sqrt{5}}{3}$, where θ is acute.

2a. Find $\cos \theta$. [3 marks]

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

evidence of valid approach (M1)

 eg right triangle, $\cos^2 \theta = 1 - \sin^2 \theta$

correct working (A1)

egmissing side is 2, $\sqrt{1-\left(rac{\sqrt{5}}{3}
ight)^2}$

 $\cos \theta = \frac{2}{3}$ A1 N2

[3 marks]

2b. Find $\cos 2\theta$. [2 marks]

Markscheme

correct substitution into formula for $\cos 2\theta$ (A1)

$$eg2 imes \left(rac{2}{3}
ight)^2 - 1, \ 1 - 2\left(rac{\sqrt{5}}{3}
ight)^2, \ \left(rac{2}{3}
ight)^2 - \left(rac{\sqrt{5}}{3}
ight)^2$$

$$\cos 2\theta = -rac{1}{9}$$
 A1 N2

[2 marks]

3a. Show that
$$\log_9(\cos 2x + 2) = \log_3\sqrt{\cos 2x + 2}$$
.

[3 marks]

Markscheme

attempting to use the change of base rule **M1**

$$\log_9\left(\cos 2x+2
ight)=rac{\log_3(\cos 2x+2)}{\log_3 9}$$
 A1

$$=rac{1}{2}\mathrm{log}_{3}\left(\cos2x+2
ight)$$
 A1

$$=\log_3\sqrt{\cos2x+2}$$
 AG

[3 marks]

3b. Hence or otherwise solve $\log_3{(2\sin{x})} = \log_9{(\cos{2x}+2)}$ for \quad [5 marks] $0 < x < \frac{\pi}{2}$.

Markscheme

$$\log_3\left(2\sin x\right) = \log_3\sqrt{\cos 2x + 2}$$

$$2\sin x = \sqrt{\cos 2x + 2}$$
 M1

$$4\sin^2 x = \cos 2x + 2$$
 (or equivalent) **A1**

use of
$$\cos 2x = 1 - 2\sin^2 x$$
 (M1)

$$6\sin^2 x = 3$$

$$\sin x = (\pm) \frac{1}{\sqrt{2}}$$
 A1

$$x=rac{\pi}{arDelta}$$
 A1

Note: Award **A0** if solutions other than $x=\frac{\pi}{4}$ are included.

[5 marks]

Consider the functions $f\Big(x\Big)=\sqrt{3}\sin\,x+\cos\,x$ where $0\leq x\leq\pi$ and g(x)=2x where $x\in\mathbb{R}.$

4a. Find $(f \circ g)(x)$.

Markscheme

$$(f\circ g)(x)=f(2x)$$
 (A1) $f(2x)=\sqrt{3}\sin\,2x+\cos\,2x$ A1

[2 marks]

4b. Solve the equation $(f\circ g)(x)=2\cos 2x$ where $0\leq x\leq \pi.$

[5 marks]

$$\sqrt{3}\sin 2x + \cos 2x = 2\cos 2x$$

$$\sqrt{3}\sin 2x = \cos 2x$$

recognising to use tan or cot

M1

 $\tan 2x = rac{1}{\sqrt{3}}$ OR $\cot 2x = \sqrt{3}$ (values may be seen in right triangle)

 $\left(\arctan\left(\frac{1}{\sqrt{3}}\right)=\right)\frac{\pi}{6}$ (seen anywhere) (accept degrees) (A1)

$$2x=rac{\pi}{6}, rac{7\pi}{6}$$

$$x = \frac{\pi}{12}, \; \frac{7\pi}{12}$$
 A1A1

Note: Do not award the final **A1** if any additional solutions are seen.

Award **A1A0** for correct answers in degrees.

Award **AOAO** for correct answers in degrees with additional values.

[5 marks]

5a. Show that $\sin 2x + \cos 2x - 1 = 2 \sin x (\cos x - \sin x)$.

[2 marks]

Note: Do not award the final **A1** for proofs which work from both sides to find a common expression other than $2\sin x\cos x - 2\sin^2 x$.

METHOD 1 (LHS to RHS)

attempt to use double angle formula for $\sin\,2x$ or $\cos\,2x$ $\it M1$

$$\mathsf{LHS} = 2\sin x \cos x + \cos 2x - 1 \; \mathsf{OR}$$

$$\sin\,2x+1-2\sin^2\,x-1\,{\rm OR}$$

$$2\sin x \cos x + 1 - 2\sin^2 x - 1$$

$$=2\sin x\cos x-2\sin^2 x$$
 A1

$$\sin 2x + \cos 2x - 1 = 2\sin x(\cos x - \sin x) = \mathsf{RHS}\,\mathbf{AG}$$

METHOD 2 (RHS to LHS)

$$\mathsf{RHS} = 2\sin x \cos x - 2\sin^2 x$$

attempt to use double angle formula for $\sin 2x$ or $\cos 2x$ $\emph{M1}$

$$=\sin 2x + 1 - 2\sin^2 x - 1$$
 A1

$$=\sin 2x + \cos 2x - 1 =$$
LHS $oldsymbol{AG}$

[2 marks]

5b. Hence or otherwise, solve $\sin 2x + \cos 2x - 1 + \cos x - \sin x = 0$ for $\ \ [6 \ marks] \ 0 < x < 2\pi.$

attempt to factorise M1

$$(\cos x - \sin x)(2\sin x + 1) = 0$$
 A1

recognition of $\cos x = \sin x \Rightarrow \frac{\sin x}{\cos x} = \tan x = 1$ OR $\sin x = -\frac{1}{2}$ (M1)

one correct reference angle seen anywhere, accept degrees (A1)

$$\frac{\pi}{4}$$
 OR $\frac{\pi}{6}$ (accept $-\frac{\pi}{6}, \frac{7\pi}{6}$)

Note: This (M1)(A1) is independent of the previous M1A1.

$$x=rac{7\pi}{6},rac{11\pi}{6},\;rac{\pi}{4},\;rac{5\pi}{4}$$
 A2

Note: Award **A1** for any two correct (radian) answers.

Award **A1A0** if additional values given with the four correct (radian) answers.

Award **A1A0** for four correct answers given in degrees.

[6 marks]

6a. Show that the equation $2\cos^2 x + 5\sin x = 4$ may be written in the form [1 mark] $2\sin^2 x - 5\sin x + 2 = 0$.

Markscheme

METHOD 1

correct substitution of $\cos^2 x = 1 - \sin^2 x$ **A1**

$$2(1-\sin^2 x)+5\sin x=4$$

$$2\sin^2 x - 5\sin x + 2 = 0$$
 AG

METHOD 2

correct substitution using double-angle identities A1

$$(2\cos^2 x - 1) + 5\sin x = 3$$

$$1 - 2\sin^2 x - 5\sin x = 3$$

$$2\sin^2 x - 5\sin x + 2 = 0$$
 AG

[1 mark]

EITHER

attempting to factorise M1

$$(2 \sin x - 1)(\sin x - 2) A1$$

OR

attempting to use the quadratic formula **M1**

$$\sin\,x=rac{5\pm\sqrt{5^2-4 imes2 imes2}}{4}ig(=rac{5\pm3}{4}ig)$$
 A1

THEN

$$\sin x = \frac{1}{2}$$
 (A1)

$$x=rac{\pi}{6},\;rac{5\pi}{6}$$
 A1A1

[5 marks]

7. It is given that $\csc\theta = \frac{3}{2}$, where $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$. Find the exact value of <code>[4 marks]</code> $\cot\theta$.

Markscheme

METHOD 1

attempt to use a right angled triangle **M1**

correct placement of all three values and θ seen in the triangle $\cot \theta < 0$ (since $\csc \theta > 0$ puts θ in the second quadrant) **R1**

$$\cot heta = -rac{\sqrt{5}}{2}$$
 A1

Note: Award *M1A1R0A0* for $\cot\theta=\frac{\sqrt{5}}{2}$ seen as the final answer The *R1* should be awarded independently for a negative value only given

as a final answer.

METHOD 2

Attempt to use $1 + \cot^2 \theta = \csc^2 \theta$ M1

$$1 + \cot^2 \theta = \frac{9}{4}$$

$$\cot^2 \theta = \frac{5}{4}$$
 (A1)

$$\cot \theta = \pm \frac{\sqrt{5}}{2}$$

 $\cot \theta < 0$ (since $\csc \theta > 0$ puts θ in the second quadrant)

$$\cot \theta = -\frac{\sqrt{5}}{2}$$
 A1

Note: Award **M1A1R0A0** for $\cot \theta = \frac{\sqrt{5}}{2}$ seen as the final answer

The **R1** should be awarded independently for a negative value only given as a final answer.

METHOD 3

$$\sin \theta = \frac{2}{3}$$

attempt to use $\sin^2 \theta + \cos^2 \theta = 1$

$$\frac{4}{9} + \cos^2 \theta = 1$$

$$\cos^2 \theta = \frac{5}{9}$$
 (A1)

$$\cos \theta = \pm \frac{\sqrt{5}}{3}$$

 $\cos\, heta < 0$ (since $\csc\, heta > 0$ puts heta in the second quadrant)

$$\cos\theta = -\frac{\sqrt{5}}{3}$$

$$\cot \theta = -\frac{\sqrt{5}}{2}$$
 A1

Note: Award **M1A1R0A0** for $\cot \theta = \frac{\sqrt{5}}{2}$ seen as the final answer

The *R1* should be awarded independently for a negative value only given as a final answer.

[4 marks]

attempt to use $\cos^2 x = 1 - \sin^2 x$ *M1*

$$2\sin^2 x - 5\sin x + 2 = 0$$
 A1

EITHER

attempting to factorise M1

$$(2\sin x - 1)(\sin x - 2)$$
 A1

OR

attempting to use the quadratic formula M1

$$\sin\,x=rac{5\pm\sqrt{5^2-4 imes2 imes2}}{4}ig(=rac{5\pm3}{4}ig)$$
 A1

THEN

$$\sin x = \frac{1}{2} (A1)$$

$$x=rac{\pi}{6},\;rac{5\pi}{6}$$
 A1A1

[7 marks]

9. Let $f(x)=4\cos\left(\frac{x}{2}\right)+1$, for $0\leqslant x\leqslant 6\pi$. Find the values of x for which $[8\ marks]$ $f(x)>2\sqrt{2}+1$.

Markscheme

METHOD 1 - FINDING INTERVALS FOR x

$$4\cos\left(\frac{x}{2}\right) + 1 > 2\sqrt{2} + 1$$

correct working (A1)

eg
$$4\cos\left(\frac{x}{2}\right) = 2\sqrt{2}$$
, $\cos\left(\frac{x}{2}\right) > \frac{\sqrt{2}}{2}$

recognizing
$$\cos^{-1}\frac{\sqrt{2}}{2}=\frac{\pi}{4}$$
 (A1)

one additional correct value for $\frac{x}{2}$ (ignoring domain and equation/inequalities) (A1)

(M1)

eg
$$-\frac{\pi}{4}, \frac{7\pi}{4}, 315^{\circ}, \frac{9\pi}{4}, -45^{\circ}, \frac{15\pi}{4}$$

three correct values for x **A1A1**

$$eg \quad \frac{\pi}{2}, \frac{7\pi}{2}, \frac{9\pi}{2}$$

valid approach to find intervals

correct intervals (must be in radians) A1A1 N2

$$0\leqslant x<rac{\pi}{2}$$
 , $rac{7\pi}{2}< x<rac{9\pi}{2}$

Note: If working shown, award **A1A0** if inclusion/exclusion of endpoints is incorrect. If no working shown award **N1**.

If working shown, award **A1A0** if both correct intervals are given, **and** additional intervals are given. If no working shown award **N1**.

Award **AOAO** if inclusion/exclusion of endpoints are incorrect **and** additional intervals are given.

METHOD 2 - FINDING INTERVALS FOR $\frac{x}{2}$

$$4\cos\left(\frac{x}{2}\right) + 1 > 2\sqrt{2} + 1$$

correct working (A1)

eg
$$4\cos\left(\frac{x}{2}\right) = 2\sqrt{2}$$
, $\cos\left(\frac{x}{2}\right) > \frac{\sqrt{2}}{2}$

recognizing
$$\cos^{-1}\frac{\sqrt{2}}{2}=\frac{\pi}{4}$$
 (A1)

one additional correct value for $\frac{x}{2}$ (ignoring domain and equation/inequalities)

eg
$$-\frac{\pi}{4}, \frac{7\pi}{4}, 315^{\circ}, \frac{9\pi}{4}, -45^{\circ}, \frac{15\pi}{4}$$

three correct values for $\frac{x}{2}$

$$eg \quad \frac{\pi}{4}, \frac{7\pi}{4}, \frac{9\pi}{4}$$

valid approach to find intervals (M1)

one correct interval for $\frac{x}{2}$

eg
$$0 \leqslant \frac{x}{2} < \frac{\pi}{4}, \frac{7\pi}{4} < \frac{x}{2} < \frac{9\pi}{4}$$

correct intervals (must be in radians) A1A1 N2

$$0 \leqslant x < rac{\pi}{2}$$
, $rac{7\pi}{2} < x < rac{9\pi}{2}$

Note: If working shown, award A1A0 if inclusion/exclusion of endpoints is

incorrect. If no working shown award **N1**.

If working shown, award **A1A0** if both correct intervals are given, **and** additional intervals are given. If no working shown award **N1**.

Award **A0A0** if inclusion/exclusion of endpoints are incorrect **and** additional intervals are given.

[8 marks]

10. A and B are acute angles such that $\cos A = \frac{2}{3}$ and $\sin B = \frac{1}{3}$.

[7 marks]

Show that $\cos\left(2A+B\right)=-rac{2\sqrt{2}}{27}-rac{4\sqrt{5}}{27}.$

Markscheme

attempt to use $\cos{(2A+B)} = \cos{2A}\cos{B} - \sin{2A}\sin{B}$ (may be seen later) $\emph{M1}$

attempt to use any double angle formulae (seen anywhere) **M1**

attempt to find either $\sin A$ or $\cos B$ (seen anywhere) $m{M1}$

$$\cos A = rac{2}{3} \Rightarrow \sin A \left(= \sqrt{1 - rac{4}{9}}
ight) = rac{\sqrt{5}}{3}$$
 (A1)

$$\sin B = rac{1}{3} \Rightarrow \cos B \left(= \sqrt{1 - rac{1}{9}} = rac{\sqrt{8}}{3}
ight) = rac{2\sqrt{2}}{3}$$
 A1

$$\cos 2A\left(=2\cos^2A-1
ight)=-rac{1}{9}$$
 A1

$$\sin 2A \, (= 2 \sin A \cos A) = rac{4\sqrt{5}}{9}$$
 A1

So
$$\cos\left(2A+B\right) = \left(-\frac{1}{9}\right)\left(\frac{2\sqrt{2}}{3}\right) - \left(\frac{4\sqrt{5}}{9}\right)\left(\frac{1}{3}\right)$$

$$=-rac{2\sqrt{2}}{27}-rac{4\sqrt{5}}{27}$$
 AG

[7 marks]

11. Given that $\sin x = \frac{1}{3}$, where $0 < x < \frac{\pi}{2}$, find the value of $\cos 4x$.

[6 marks]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

correct substitution into formula for $\cos{(2x)}$ or $\sin{(2x)}$ (A1)

$$eg \ 1 - 2\left(\frac{1}{3}\right)^2$$
, $2\left(\frac{\sqrt{8}}{3}\right)^2 - 1$, $2\left(\frac{1}{3}\right)\left(\frac{\sqrt{8}}{3}\right)$, $\left(\frac{\sqrt{8}}{3}\right)^2 - \left(\frac{1}{3}\right)^2$

$$\cos{(2x)}=\frac{7}{9}$$
 or $\sin{(2x)}=\frac{2\sqrt{8}}{9}$ $\left(=\frac{\sqrt{32}}{9}=\frac{4\sqrt{2}}{9}\right)$ (may be seen in substitution) **A2**

recognizing 4x is double angle of 2x (seen anywhere) (M1)

$$eg \cos{(2(2x))}, \ 2\cos^2{(2\theta)} - 1, \ 1 - 2\sin^2{(2\theta)}, \ \cos^2{(2\theta)} - \sin^2{(2\theta)}$$

correct substitution of **their** value of $\cos{(2x)}$ and/or $\sin{(2x)}$ into formula for $\cos{(4x)}$ (A1)

$$eg \ 2\left(\frac{7}{9}\right)^2 - 1$$
, $\frac{98}{81} - 1$, $1 - 2\left(\frac{2\sqrt{8}}{9}\right)^2$, $1 - \frac{64}{81}$, $\left(\frac{7}{9}\right)^2 - \left(\frac{2\sqrt{8}}{9}\right)^2$, $\frac{49}{81} - \frac{32}{81}$

$$\cos{(4x)} = \frac{17}{81}$$
 A1 N2

METHOD 2

recognizing 4x is double angle of 2x (seen anywhere) (M1)

 $eg \cos(2(2x))$

double angle identity for 2x (M1)

$$eg \ 2\cos^2{(2 heta)} - 1$$
, $1 - 2\sin^2{(2x)}$, $\cos^2{(2 heta)} - \sin^2{(2 heta)}$

correct expression for $\cos{(4x)}$ in terms of \sin{x} and/or \cos{x} (A1)

$$eg \ 2(1-2\sin^2\theta)^2-1, \ 1-2(2\sin x\cos x)^2,$$

$$(1-2\sin^2\theta)^2-(2\sin\theta\cos\theta)^2$$

correct substitution for $\sin x$ and/or $\cos x$

$$eg \ 2\Big(1-2\big(\frac{1}{3}\big)^2\Big)^2-1, \ 2\Big(1-4\big(\frac{1}{3}\big)^2+4\big(\frac{1}{3}\big)^4\Big)-1, \ 1-2\Big(2\times\frac{1}{3}\times\frac{\sqrt{8}}{3}\Big)^2$$

correct working (A1)

eg
$$2\left(\frac{49}{81}\right) - 1$$
, $1 - 2\left(\frac{32}{81}\right)$, $\frac{49}{81} - \frac{32}{81}$

$$\cos{(4x)} = \frac{17}{81}$$
 A1 N2

[6 marks]

Express f(x) in terms of $\sin x$ and $\cos x$.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$an(x+\pi) = an x \left(= rac{\sin x}{\cos x} \right)$$
 (M1)A1

$$\cos\left(x-\frac{\pi}{2}\right)=\sin x$$
 (M1)A1

Note: The two M1s can be awarded for observation or for expanding.

$$an\left(x+\pi
ight)=\cos\left(x-rac{\pi}{2}
ight)=rac{\sin^2x}{\cos x}$$
 A1

[5 marks]

13. Solve $\log_2(2\sin x) + \log_2(\cos x) = -1$, for $2\pi < x < \frac{5\pi}{2}$.

[7 marks]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

correct application of $\log a + \log b = \log ab$ (A1)

$$eg \log_2(2\sin x\cos x), \log 2 + \log(\sin x) + \log(\cos x)$$

correct equation without logs **A1**

eg
$$2\sin x \cos x = 2^{-1}$$
, $\sin x \cos x = \frac{1}{4}$, $\sin 2x = \frac{1}{2}$

recognizing double-angle identity (seen anywhere) A1

eg
$$\log(\sin 2x)$$
, $2\sin x \cos x = \sin 2x$, $\sin 2x = \frac{1}{2}$

evaluating
$$\sin^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}\left(30^{\circ}\right)$$
 (A1)

correct working A1

$$eg~~x=rac{\pi}{12}+2\pi,~2x=rac{25\pi}{6},~rac{29\pi}{6},~750^\circ,~870^\circ,~x=rac{\pi}{12}$$
 and $x=rac{5\pi}{12}$, one correct final answer

$$x=rac{25\pi}{12},\;rac{29\pi}{12}$$
 (do not accept additional values) $\,$ **A2** $\,$ **N0**

[7 marks]

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

use of
$$\sec^2 x = \tan^2 x + 1$$
 M1

$$\tan^2 x + 2\tan x + 1 = 0$$

$$(\tan x + 1)^2 = 0$$
 (M1)

$$\tan x = -1$$
 A1

$$x=rac{3\pi}{4}, rac{7\pi}{4}$$
 A1A1

METHOD 2

$$\frac{1}{\cos^2 x} + \frac{2\sin x}{\cos x} = 0 \quad \mathbf{M1}$$

$$1 + 2\sin x \cos x = 0$$

$$\sin 2x = -1$$
 M1A1

$$2x = \frac{3\pi}{2}, \ \frac{7\pi}{2}$$

$$x=rac{3\pi}{4}, rac{7\pi}{4}$$
 A1A1

Note: Award **A1A0** if extra solutions given or if solutions given in degrees (or both).

[5 marks]

^{15a.} Show that
$$\cot 2\theta = \frac{1-\tan^2\theta}{2\tan\theta}$$
.

[1 mark]

stating the relationship between \cot and \tan and stating the identity for $\tan 2\theta$

$$\cot 2 heta = rac{1}{ an 2 heta}$$
 and $an 2 heta = rac{2 an heta}{1 - an^2 heta}$

$$\Rightarrow \cot 2\theta = \frac{1-\tan^2 \theta}{2\tan \theta}$$
 AG

[1 mark]

15b. Verify that $x= an \theta$ and $x=-\cot \theta$ satisfy the equation $x^2+(2\cot 2\theta)\,x-1=0.$

[7 marks]

METHOD 1

attempting to substitute $\tan \theta$ for x and using the result from (a) M1

LHS =
$$an^2 \theta + 2 an \theta \left(rac{1 - an^2 \theta}{2 an \theta} \right) - 1$$
 41

$$\tan^2 \theta + 1 - \tan^2 \theta - 1 = 0 (= RHS)$$
 A1

so $x = \tan \theta$ satisfies the equation ${\it AG}$

attempting to substitute $-\cot\theta$ for x and using the result from (a)

LHS =
$$\cot^2 \theta - 2 \cot \theta \left(\frac{1 - \tan^2 \theta}{2 \tan \theta} \right) - 1$$
 41

$$=rac{1}{ an^2 heta}-\left(rac{1- an^2 heta}{ an^2 heta}
ight)-1$$
 A1

$$rac{1}{ an^2 heta}-rac{1}{ an^2 heta}+1-1=0$$
(= RHS) **A1**

so $x = -\cot\theta$ satisfies the equation ${\it AG}$

METHOD 2

let $\alpha = \tan \theta$ and $\beta = -\cot \theta$

attempting to find the sum of roots **M1**

$$lpha + eta = an heta - rac{1}{ an heta}$$

$$= rac{ an^2 heta - 1}{ an heta} \quad extbf{A1}$$

$$=-2\cot2\theta$$
 (from part (a)) $m{A1}$

attempting to find the product of roots **M1**

$$\alpha \beta = \tan \theta \times (-\cot \theta)$$
 A1

$$=-1$$
 A1

the coefficient of x and the constant term in the quadratic are $2\cot 2\theta$ and -1 respectively

hence the two roots are lpha= an heta and $eta=-\cot heta$

[7 marks]

METHOD 1

 $x= anrac{\pi}{12}$ and $x=-\cotrac{\pi}{12}$ are roots of $x^2+\left(2\cotrac{\pi}{6}
ight)x-1=0$

Note: Award **R1** if only $x= anrac{\pi}{12}$ is stated as a root of $x^2+\left(2\cotrac{\pi}{6}\right)x-1=0.$

$$x^2 + 2\sqrt{3}x - 1 = 0$$
 A1

attempting to solve **their** quadratic equation *M1*

$$x=-\sqrt{3}\pm 2$$
 A1

$$an rac{\pi}{12} > 0 \ (-\cot rac{\pi}{12} < 0)$$

so
$$\tan\frac{\pi}{12}=2-\sqrt{3}$$
 AG

METHOD 2

attempting to substitute $heta=rac{\pi}{12}$ into the identity for an 2 heta

$$an rac{\pi}{6} = rac{2 an rac{\pi}{12}}{1 - an^2 rac{\pi}{12}}$$

$$an^2 rac{\pi}{12} + 2\sqrt{3} an rac{\pi}{12} - 1 = 0$$
 A1

attempting to solve **their** quadratic equation *M1*

$$anrac{\pi}{12} = -\sqrt{3} \pm 2$$
 A1

$$\tan \frac{\pi}{12} > 0$$
 R1

so
$$\tan\frac{\pi}{12}=2-\sqrt{3}$$
 AG

[5 marks]

15d. Using the results from parts (b) and (c) find the exact value of $\tan\frac{\pi}{24}-\cot\frac{\pi}{24}$.

[6 marks]

Give your answer in the form $a+b\sqrt{3}$ where a, $b\in\mathbb{Z}.$

$$anrac{\pi}{24}-\cotrac{\pi}{24}$$
 is the sum of the roots of $x^2+\left(2\cotrac{\pi}{12}
ight)x-1=0$

$$anrac{\pi}{24}-\cotrac{\pi}{24}=-2\cotrac{\pi}{12}$$
 A1

$$=rac{-2}{2-\sqrt{3}}$$
 A1

attempting to rationalise **their** denominator (M1)

$$= -4 - 2\sqrt{3}$$
 A1A1

[6 marks]

© International Baccalaureate Organization 2023
International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM