- 3 a Draw the graph of $y = f(x) = 3^x$.
 - b On the same set of axes, sketch the graph of $y = [f(x)]^2$.
 - Describe a stretch which transforms y = f(x) to $y = [f(x)]^2$.
- **4** a Draw the graph of $y = f(x) = \log_3 x$.
 - b On the same set of axes, sketch the graph of $y = [f(x)]^2$.
 - \mathbf{c} Find the invariant points when y = f(x) is transformed to $y = [f(x)]^2$.
- 5 Show that if f(x) is odd, then $[f(x)]^2$ is even.
- 6 Suppose f(x) has domain $0 \le x \le 5$ and range $-4 \le y \le 3$. Find the domain and range of $[f(x)]^2$.
- 7 Consider the function $f(x) = \frac{2x+4}{x-1}$
 - a Find the axes intercepts and asymptotes of the function.
 - b Hence find the axes intercepts and asymptotes of $y = [f(x)]^2$.
 - Which points are invariant when y = f(x) is transformed to $y = [f(x)]^2$?
 - d Sketch y = f(x) and $y = [f(x)]^2$ on the same set of axes.

C

ABSOLUTE VALUE FUNCTIONS

The **absolute value** or **modulus** of a real number x is its distance from 0 on the number line. We write the absolute value of x as |x|.

Because the absolute value is a distance, it cannot be negative.

• If x > 0, |x| = x.

• If x < 0, |x| = -x.

For example: |7| = 7 and |-5| = 5.

This leads us to the algebraic definition:

The **absolute value of**
$$x$$
 is $|x| = \begin{cases} x & \text{if } x \geqslant 0 \\ -x & \text{if } x < 0 \end{cases}$ or alternatively $|x| = \sqrt{x^2}$.

The relation y = |x| is in fact a function. We call it the **absolute value function**, and it has the graph shown.

THE GRAPH y = |f(x)|

The absolute value of the function f(x) is $|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$.

Invariant points do not move under a transformation.

To obtain the graph of y = |f(x)| from the graph of y = f(x):

- keep the graph for $f(x) \ge 0$
- reflect the graph in the x-axis for f(x) < 0, discarding what was there
- points on the x-axis are invariant.

THE GRAPH y = f(|x|)

We know that
$$|x|=\begin{cases} x & \text{if } x\geqslant 0 \\ -x & \text{if } x<0 \end{cases}$$
, so $f(|x|)=\begin{cases} f(x) & \text{if } x\geqslant 0 \\ f(-x) & \text{if } x<0 \end{cases}$.

To obtain the graph of y = f(|x|) from the graph of y = f(x):

- discard the graph for x < 0
- reflect the graph for $x \ge 0$ in the y-axis, keeping what was there
- points on the y-axis are invariant.

Example 4

Self Tutor

Draw the graph of f(x) = 3x(x-2), and on the same set of axes draw the graph of:

$$y = |f(x)|$$

b y = f(|x|)

a
$$y = |f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$$
 b $y = f(|x|) = \begin{cases} f(x) & \text{if } x \ge 0 \\ f(-x) & \text{if } x < 0 \end{cases}$

The graph is unchanged for $f(x) \ge 0$ and reflected in the x-axis for f(x) < 0.

The graph is unchanged for $x \ge 0$ and reflected in the y-axis for x < 0.

EXERCISE 6C.1

1 Draw y = f(x) = 2x - 4, and on the same set of axes draw the graph of:

$$y = |f(x)|$$

$$b \quad y = f(|x|)$$

- 2 Draw y = f(x) = x(x+2), and on the same set of axes draw the graph of:
 - **a** y = |f(x)| **b** y = f(|x|)
- 3 Draw $y = f(x) = -x^2 + 6x 8$, and on the same set of axes draw the graph of:
 - **a** y = |f(x)| **b** y = f(|x|)
- 4 Draw $y = f(x) = 3^x 3$, and on the same set of axes draw the graph of:
 - **a** y = |f(x)| **b** y = f(|x|)
- a Copy the following graphs for y = f(x) and on the same set of axes draw the graph of y = |f(x)|:

- Repeat a, but this time draw the graphs of y = f(x) and y = f(|x|) on the same set of axes.
- Show that if f(x) is an odd function, then |f(x)| is an even function.
- 7 Let $f(x) = \sqrt{4-x}$.
 - a Draw the graph of y = f(x) and state its domain and range.
 - Draw the graph of y = f(|x|) and state its domain and range.
- Suppose f(x) has domain $-2 \le x \le 6$ and range $-7 \le y \le 5$.
 - **a** Find:
 - the domain of f(|x|)
- the range of |f(x)|.
- Can we determine the range of f(|x|)? Explain your answer.
- 9 Suppose f(x) has x-intercepts -3 and 4, and y-intercept -2. Find the axes intercepts of:
 - |f(x)|

- f(|x|)
- 10 Suppose $f(x) = \log_2(x+4)$. Sketch the graphs of y = f(x) and y = |f(|x|)| on the same set of axes.

- 11 Use the definition $|x| = \sqrt{x^2}$ to prove that:
 - |-x| = |x| for all x
 - |xy| = |x||y| for all x, y
 - |x-y|=|y-x| for all x, y

- **b** $|x|^2 = x^2$ for all x
- $\frac{d}{|x|} = \frac{|x|}{|y|} \text{ for all } x \text{ and } y, \ y \neq 0$

Example 5

Self Tutor

Use the definition $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$ to write the following functions without the modulus

sign. Hence graph each function:

f(x) = x - |x|

- f(x) = x |x|
- a If x < 0, f(x) = x (-x) = 2x. If $x \ge 0$, f(x) = x - x = 0.
- **b** If $x \ge 0$, $f(x) = x(x) = x^2$. If x < 0, $f(x) = x(-x) = -x^2$.

This branch is $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ This branch is $y = -x^2$, x < 0

12 Use $|x| = \begin{cases} x & \text{if } x \geqslant 0 \\ -x & \text{if } x < 0 \end{cases}$

to write the following functions without modulus signs.

Hence graph each function.

- y = |x-2|
- **b** y = |x+1|

- y = |x| + x
- $y = \frac{|x|}{x}$
- $y = \left| x \right|$ $y = x 2 \left| x \right|$

- y = |x| + |x 2| y = |x| |x 1|

MODULUS EQUATIONS

A modulus equation is an equation which involves the absolute value function.

To solve modulus equations we use the definitions of absolute value and the properties found in the previous Exercise:

- $|x| \geqslant 0$ for all x
- $|x|^2 = x^2$ for all x
- $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$ for all x and y, $y \neq 0$
- \bullet |-x| = |x| for all x
- |xy| = |x||y| for all x and y
- |x-y| = |y-x| for all x and y.

We notice in particular that if |x| = a, a > 0

then
$$|x|^2 = a^2$$

$$x^2 = a^2$$
 $\{ |x|^2 = x^2 \}$

$$\therefore x = \pm \sqrt{a^2}$$

$$\therefore x = \pm a$$

If |x| = a where a > 0, then $x = \pm a$.

Example 6

Self Tutor

Solve for *x*:

$$|2x+3|=7$$

b
$$|3-2x|=-1$$

$$|2x+3|=7$$

$$2x + 3 = \pm 7$$

$$2x + 3 = 7$$
 or $2x + 3 = -7$

$$2x + 3 = -7$$

$$\therefore 2x = 4$$
 or

$$2x = -10$$

$$\therefore x = 2$$
 or

$$x = -5$$

So,
$$x = 2 \text{ or } -5$$
.

b
$$|3-2x|=-1$$

has no solution as LHS is never negative.

Example 7

◄ Self Tutor

Solve for *x*:

$$\left| \frac{3x+2}{1-x} \right| = 4$$

$$|x+1| = |2x-3|$$

a If
$$\left| \frac{3x+2}{1-x} \right| = 4$$
 then $\frac{3x+2}{1-x} = \pm 4$.

$$\therefore \frac{3x+2}{1-x} = 4$$

$$\therefore \frac{3x+2}{1-x} = 4 \qquad \text{or} \qquad \frac{3x+2}{1-x} = -4$$

$$\therefore 3x + 2 = 4(1-x)$$
 or $3x + 2 = -4(1-x)$

$$3x + 2 = -4(1 - x)$$

$$3x \pm 2 - 4(1 - x)$$

$$3x + 2 = 4 - 4x$$
 or $3x + 2 = -4 + 4x$

$$\therefore$$
 $7x=2$

$$\therefore 7x = 2 \qquad \text{or} \qquad 6 = x$$

$$\therefore x = \frac{2}{7} \qquad \text{or} \qquad x = 6$$

So,
$$x = \frac{2}{7}$$
 or 6.

b If
$$|x+1| = |2x-3|$$
, then $x+1 = \pm(2x-3)$

$$\therefore x+1=2x-3$$

$$\therefore x + 1 = 2x - 3$$
 or $x + 1 = -(2x - 3)$

$$4 = x$$

$$\therefore 4 = x$$
 or $x + 1 = -2x + 3$

$$\therefore x = 4$$

or
$$3x = 2$$

$$\therefore x = 4$$

$$3x =$$

So,
$$x = \frac{2}{3}$$
 or 4.

 $x = \frac{2}{3}$ or

Always check your answers by substituting back into the original equation.

EXERCISE 6C.2

Solve for *x*:

$$|x| = 3$$

d
$$|x-1|=3$$

$$|3x-2|=1$$

$$|x| = -5$$

$$|3-x|=4$$

$$|3-2x|=3$$

$$|x| = 0$$

$$|x+5| = -1$$

$$|2-5x|=12$$

2 Solve for x:

$$\left| \frac{x}{x-1} \right| = 3$$

$$\left| \frac{2x-1}{x+1} \right| = 5$$

$$\left| \frac{x+3}{1-3x} \right| = \frac{1}{2}$$

- Explain why the equation $\left| \frac{3x+1}{x-1} \right| = 3$ has only one solution.
 - **b** Find the solution.
- 4 Prove that if |x| = |a| then $x = \pm a$.
- Solve for x:

$$|3x-1| = |x+2|$$

a
$$|3x-1| = |x+2|$$
 b $|2x+5| = |1-x|$ **c** $|x+1| = |2-x|$

$$|x+1| = |2-x|$$

d
$$|x| = |5 - x|$$

$$|3x+2|=2|2-x|$$

Example 8

Solve graphically: $|x+1| = \frac{x}{2} + 2$

We graph y = |x+1| and $y = \frac{x}{2} + 2$ on the same set of axes.

The graphs intersect at (-2, 1) and (2, 3)

 \therefore the solutions are x = -2 or 2.

- Sketch the graphs of y = |x+3| and $y = 7 \frac{x}{3}$ on the same set of axes.
 - b Solve the equation $|x+3| = 7 \frac{x}{3}$.
- Solve graphically:

$$|x+2| = 2x+1$$

a
$$|x+2| = 2x+1$$
 b $|2x+3| = 3|x|-1$ c $|x-2| = \frac{2}{5}x+1$

$$|x-2| = \frac{2}{5}x + 1$$

$$x^2 - 1 = |5x - x^2|$$

$$|e^x - 6| = 2^x$$

$$x^3 - 4x = \ln|x|$$

MODULUS INEQUALITIES

There are several methods we can use to solve modulus inequalities, depending on the situation:

• For some modulus inequalities it is easiest to separate the inequality into two.

• For modulus inequalities where we know each side of the inequality is positive, we can square both sides.

EXERCISE 6C.3

1 Solve for x:

$$|x-1| \le 4$$

d
$$|3x+5| \ge 2$$

$$|x+2| > 7$$

$$|2x-3|<1$$

$$|1-2x|<4$$

$$|-5x-4| > \frac{1}{2}$$

Solve for x:

$$|x+5| < |x-1|$$

$$|3x+4| \ge |x+3|$$

b
$$|2x+1| > |x+2|$$

$$2|x-4| < |3x+2|$$

b
$$|2x+1| > |x+2|$$
 c $|x-3| \le |2x-6|$

$$2|x-4| < |3x+2|$$
 f $\frac{1}{3}|2x+5| \ge |4-x|$

3 Solve for x:

$$\left| \frac{x}{x-2} \right| \geqslant 3$$

$$\left| \frac{2x+3}{x-1} \right| \geqslant 2$$

$$\left| \frac{x-4}{1-2x} \right| < \frac{2}{3}$$

Example 11

Solve graphically: $|x+1| > \sqrt{x^3 + 2}$.

◄ Self Tutor

We draw graphs of y = |x+1| and $y = \sqrt{x^3 + 2}$ on the same set of axes.

Casio fx-CG50

TI-84 Plus CE

HP Prime

The graphs intersect at $x \approx -1.2470$, $x \approx 0.4450$, and $x \approx 1.8019$.

 $|x+1| > \sqrt{x^3+2}$ when $-\sqrt[3]{2} \leqslant x < -1.247$ and when 0.445 < x < 1.802.

Make sure you consider the domain of each function you graph.

GRAPHICS CALCULATOR INSTRUCTIONS

4 Solve graphically:

$$|2x-3| < x$$

$$x^2 - 4 > |x - 1|$$

$$\ln |x^2 - x + 5| \ge 0.1x^4$$

$$|3x \arccos x| > 1$$

b
$$|x|-2 \ge |4-x|$$

d
$$|2x-1|+|x-4| \le 10-x$$

$$7|x| - e^{|x|} \ge \log_2(x^2 - x - 2)$$

h
$$0.2\ln(7-2x) < \left|\sqrt{15-x^2}-3\right|$$

823

 $2x^2-6x+5$ has $\Delta<0$, so $2x^2-6x+5$ has no real zeros.

- **28** a $-\frac{1}{2}$ and $\pm i\sqrt{5}$ b -7, -1, and 2
- **a** $x \leqslant -1.10$ or $0.854 \leqslant x \leqslant 4.25$ **b** x > 2.33

EXERCISE 6A

- **b** neither odd d odd < even even f neither
- **5** (-1,3), (5,-2) **6** (-4,-6), (1,-2) **7** $a=-\frac{3}{2}$

- 8 b = -1 9 **b** b = 0, d = 0 **c** b = 0, d = 0
- \bullet Even, the graph of the function is symmetric about the y-axis.
 - **b** Odd, the graph of the function has rotational symmetry about the origin.
 - Odd, the graph has rotational symmetry about the origin.
- $k=n\pi, n\in\mathbb{Z}$
- $b k = \frac{\pi}{2} + n\pi, n \in \mathbb{Z}$
- $k \neq \frac{n\pi}{2}, n \in \mathbb{Z}$
- 13 even **14** odd

EXERCISE 6B

• A horizontal stretch with scale factor $\frac{1}{2}$.

- (1,0) and (3,1)
- **6** Domain is $\{x \mid 0 \leqslant x \leqslant 5\}$, Range is $\{y \mid 0 \leqslant y \leqslant 16\}$
- a x-int. -2, y-int. -4, VA x = 1, HA y = 2
- **b** x-int. -2, y-int. 16, VA x = 1, HA y = 4
 - (-5, 1) and (-2, 0)

EXERCISE 6C.1

III

iv

Ш

Domain is $\{x \mid x \leq 4\}$,

Range is
$$\{y \mid y \geqslant 0\}$$

Domain is

$$\{x \mid -4 \leqslant x \leqslant 4\},\$$

Range is
$$\{y \mid 0 \leqslant y \leqslant 2\}$$

a i $\{x \mid -6 \leqslant x \leqslant 6\}$ ii $\{y \mid 0 \leqslant y \leqslant 7\}$

$$ii \quad \{y \mid 0 \leqslant y \leqslant 7\}$$

- b No, we do not know the behaviour of f(x) on $-2 \le x < 0$, which is discarded when we find f(|x|). This may or may not affect the range of y = f(|x|).
- a x-intercepts -3 and 4, y-intercept 2
 - **b** x-intercepts 4 and -4, y-intercept -2

10

12 **a** $y = \begin{cases} x-2, & x \geqslant 2 \\ 2-x, & x < 2 \end{cases}$ **b** $y = \begin{cases} x+1, & x \geqslant -1 \\ -x-1, & x < -1 \end{cases}$

$$y = \begin{cases} -x, & x \geqslant 0 \\ x, & x < 0 \end{cases}$$

 $y = \begin{cases} 1, & x>0\\ \text{undefined,} & x=0\\ -1, & x<0 \end{cases} \quad \text{f} \quad y = \begin{cases} -x, & x\geqslant 0\\ 3x, & x<0 \end{cases}$

- $\mathbf{g} \ \ y = \begin{cases} 2x 2, \ x \geqslant 2 \\ 2, & 0 \leqslant x < 2 \\ 2 2x, \ x < 0 \end{cases} \quad \mathbf{h} \ \ y = \begin{cases} 1, & x \geqslant 1 \\ 2x 1, & 0 \leqslant x < 1 \\ -1, & x < 0 \end{cases}$

EXERCISE 6C.2

- 1 **a** $x = \pm 3$
- **b** no solutions
- d x = 4 or -2 x = -1 or x = 7 f no solutions

x=0

- g x = 1 or $\frac{1}{3}$ h x = 0 or 3 i x = -2 or $\frac{14}{5}$
- 2 **a** $x = \frac{3}{2}$ or $\frac{3}{4}$ **b** x = -2 or $-\frac{4}{7}$ **c** x = -1 or 7

- a In the case $\frac{3x+1}{x-1}=3$ we get 3x+1=3x-3 which has no solutions.
 - **b** $x = \frac{1}{3}$
- 5 a $x = \frac{3}{2}$ or $-\frac{1}{4}$ b $x = -\frac{4}{3}$ or -6 c $x = \frac{1}{2}$

 - d $x = \frac{5}{2}$ e $x = \frac{1}{2}$ or $-\frac{1}{2}$ f $x = \frac{2}{5}$ or -6

b x = -15 or 3

- (-15, 12) $y = 7 - \frac{x}{3}$ y = |x+3|
- 7 **a** x = 1 **b** $x = -\frac{4}{5}$ or 4
 - $x \approx 0.714$ or x = 5 d $x \approx 2.69$

 - $x \approx 1.28 \text{ or } 2.43$ f $x \approx -1.91, 0.304, \text{ or } 2.09$

EXERCISE 6C.3

- **a** $-3 \le x \le 5$ **b** x < -9 or x > 5

 - c 1 < x < 2 d $x \leqslant -\frac{7}{3}$ or $x \geqslant -1$

 - $e^{-\frac{3}{2}} < x < \frac{5}{2}$ **f** $x < -\frac{9}{10}$ or $x > -\frac{7}{10}$
- 2 a x < -2 b x < -1 or x > 1
- - c all $x \in \mathbb{R}$ d $x \leqslant -\frac{7}{4}$ or $x \geqslant -\frac{1}{2}$
- 3 a $\frac{3}{2} \leqslant x \leqslant 3, \ x \neq 2$ b $x \geqslant -\frac{1}{4}, \ x \neq 1$

 - x < -10 or x > 2

- 4 a 1 < x < 3 b $x \geqslant 3$ c x < -2.79 or x > 2.30

- d $-\frac{5}{2} \leqslant x \leqslant \frac{7}{2}$ $\sim -2.24 \leqslant x \leqslant 2.11$
- $-2.80 \leqslant x < -1$ or $2 < x \leqslant 2.92$
 - $-1 \le x < -0.189$ or 0.254 < x < 0.937
 - h $-3.87 \le x < -2.97$ or -1.72 < x < 2.19 or 2.59 < x < 3.5

EXERCISE 6D.1

- a vertical asymptotes x = 2 and x = 6, horizontal asymptote y = 0
 - **b** x-intercept $\frac{5}{4}$, y-intercept $-\frac{5}{12}$
- i vertical asymptotes x = -3 and x = 2, horizontal asymptote y = 0
 - ii x-intercept 1, y-intercept $\frac{1}{6}$
 - + + + x
 - iv As $x \to -3^-$, $y \to -\infty$
 - As $x \to -3^+$, $y \to \infty$
 - As $x \to 2^-$, $y \to -\infty$
 - As $x \to 2^+$, $y \to \infty$
 - As $x \to -\infty$, $y \to 0^-$
 - As $x \to \infty$, $y \to 0^+$

- i vertical asymptotes x = 1 and x = 3, horizontal asymptote y = 0
 - ii x-intercept 4, y-intercept $-\frac{8}{3}$

 - iv As $x \to 1^-$, $y \to -\infty$
 - As $x \to 1^+$, $y \to \infty$
 - As $x \to 3^-$, $y \to \infty$
 - As $x \to 3^+$, $y \to -\infty$
 - As $x \to -\infty$, $y \to 0^-$
 - As $x \to \infty$, $y \to 0^+$
- i vertical asymptotes x = -2 and x = 4, horizontal asymptote y = 0
 - ii x-intercept $\frac{5}{3}$, y-intercept $-\frac{5}{8}$