Solutions to Exercises

Chapter 1

1.1 Since AP = BP, we have $\angle 1 = \angle B$. Now $\angle 2 = 90^\circ - \angle 1 = 90^\circ - \angle B = \angle C$, which implies AP = CP. The conclusion follows.

1.2 Choose *E* on *AC* such that AB = AE Since *AD* bisects $_BAC$, one sees that $\triangle ABD \cong \triangle AED$ (S.A.S.). Hence, BD = DE and $_AED = _ABD = 2_C$. Since $_AED = _C + _CDE$, we conclude that $\angle C = \angle CDE$, i.e., CE = DE. Now CE = DE = BD. We have AC = AE + CE = AB + BD.

1.3 It is easy to see that $\triangle ACE \cong \triangle AGB$ (S.A.S.). Hence, we have BG = CE and $\angle ACE = \angle AGB$. Let *BG* and *CE* intersect at *P*. Notice that $\angle CPG = \angle CAG =$ 90° (Example 1.1.6) and hence, *BG* | *CE*.

1.4 Refer to the left diagram below. Let *BP,CP* bisect the exterior angles of $\angle B$, $\angle C$ respectively. We are to show *AP* bisects $\angle A$. Draw *PD* \perp *BC* at *D*, *PE* \perp *AB* at *E* and *PF* \perp *AC* at *F*. It is easy to see that $\triangle BPE \cong \triangle BPD$ (A.A.S.) and hence, *PD* = *PE*. Similarly, *PD* = *PF*.

Now we have PE = PF. Refer to the right diagram above. One sees that $\triangle APE \cong \triangle APF$ (H.L.) and hence, *AP* bisects $\angle A$.

1.5 Connect AJ_1 . Since AI and AJ_1 are the angle bisectors of neighboring supplementary angles, we have $AI \perp AJ_1$ (Example 1.1.9, or one may simply see that

$$\angle LAJ_1 = \angle CAI + \angle CAJ_1 = \frac{1}{2} \angle BAC + \frac{1}{2} (180^\circ - \angle BAC) = 90^\circ .)$$

Similarly, $AI \perp AJ_2$. Now $J_1AJ_2 = 90^\circ + 90^\circ = 180^\circ$ which implies A, J_1 , J_2 are collinear and hence, $AI \perp J_1J_2$.

1.6 Choose *E*' on *CD* extended such that DE' = BE. Connect *AE*' It is easy to see that $\triangle ABE \cong \triangle ADE'$ (S.A.S.). Hence, AE = AE' and $\angle BAE = \angle DAE$.' Now we see that $\angle EAF = \angle E'AF = 45^\circ$ and $\triangle AEF \cong \triangle AE'F$ (S.A.S.). Hence, EF = EF = DF + BE.

1.7 We have $\angle ABD = \angle ACE = 90^\circ - \angle BAC$. Hence, $\triangle ABP \cong \triangle QCA$ (S.A.S.). It

follows that AQ = AP and $\angle QAD = \angle APD = 90^\circ - \angle PAC$, i.e., $\angle QAD + \angle PAC = \angle PAQ = 90^\circ$. Thus, $\angle AQP = 45^\circ$.

1.8 Connect *CD*. Since BE = AB = BC and *BD* bisects $\angle CBE$, we have $\triangle BCD \cong \triangle BED$ (S.A.S.). Hence, $\angle BED = \angle BCD$.

Since AD = BD, D (and similarly C) lie on the perpendicular bisector of AB, which is indeed the line CD. It follows that CD bisects $\angle ACB$.

Now
$$\angle BED = \angle BCD = \frac{1}{2} \angle ACB = 30^{\circ}$$
.

1.9 Since *I* is the incenter, *CI* bisects $\angle C$. Theorem 1.3.3 gives $\angle AIB = 90^\circ + \frac{1}{2} \angle C$. Hence, $\angle BID = 180^{\circ'} \angle AIB = 90^\circ + \frac{1}{2} \angle C$. = $90^\circ - \angle BCI = \angle CIH$.

1.10 Since $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$, we have $\triangle ABC \cong \triangle ADC$ (A.A.S.). Hence, AB = AD and $\angle ABF = \angle ADE$. Now $\triangle ABF \cong \triangle ADE$ (A.A.S.), which implies AE = AF. It follows that $\triangle AEP \cong \triangle AFP$ (S.A.S.) and PE = PF. Note that the proof holds regardless of the position of P.

1.11 Let *M* be the midpoint of *BC*. Since *O* is the circumcenter of $\triangle BCD$, *OM* is the perpendicular bisector of *BC*. On the other hand, since *I* is the incenter of $\triangle ACD$, *AI* is the angle bisector $\angle A$, which passes through *M* since *AB* = *AC*. Thus, *A*, *I*, *O* lie on the perpendicular bisector of *BC*. The conclusion follows.

1.12 Let $\angle ABC = 2a$ and $\angle APC = 2\beta$. We have $_BAP = \angle APC - \angle ABC = 2(\alpha - \beta)$. Since *BD*, *PD* are angle bisectors, we have $_CBD = a$ and $\angle CPD = \beta$. It follows that $_BDP = _CPD - \angle CBD = \alpha - \beta$

Notice that *D* is the ex-center of $\triangle ABP$ opposite *B* (Exercise 1.4), which implies that *AD* bisects the exterior angle of $\angle BAP$.

N o $\forall \angle PAD = \frac{1}{2}(180^\circ - \angle BAP) = 90^\circ - \frac{1}{2} \cdot 2(\alpha - \beta) = 90^\circ - \angle BDP.$ This completes the proof.

1.13 Suppose otherwise. Draw *CD*' // *AB*, intersecting the line *AD* at *D*' Now *ABCD*' is a parallelogram and AB = CDBC = AD' We have AD'-CD' = BC - AB = AD - CD.

Case I: AD < AD'

Refer to the diagram below.

We have DD' = AD'-AD = CD' - CD, i.e., DD'+CD = CD This contradicts triangle inequality.

Case II: AD > AD'Similarly, we have DD' = AD - AD' = CD - CD', i.e., DD'+CD' = CD. This contradicts triangle inequality.

It follows that *D* and *D*' coincide, i.e., *ABCD* is a parallelogram.

1.14 Draw $EP \perp \ell_2$ at *P* and *AQ* // *EH*, intersecting *CD* at *Q*. It is easy to see that *AEHQ* is a parallelogram and hence, *EH* = *AQ*. Given that *EP* = *AQ*, we must have $\triangle EPH \cong \triangle ADQ$ (H.L.). It follows that $\angle 1 = \angle AQD = \angle 2$. Similarly, we have $\angle BGF = \angle HGF$.

Now $\angle GIH = 180^\circ - \angle HGF - \angle 1$, where $\angle 1 = \frac{1}{2} (180^\circ - \angle CHG)$

= 90°
$$-\frac{1}{2} \angle CHG$$
 and similarly, $\angle HGF = 90° - \frac{1}{2} \angle CGH$.

Hence, $\angle GIH = 180^{\circ} - \left(90^{\circ} - \frac{1}{2} \angle CHG\right) - \left(90^{\circ} - \frac{1}{2} \angle CGH\right)$

 $=\frac{1}{2}(\angle CGH + \angle CHG) = 45^{\circ}, \text{ because } \triangle CGH \text{ is a right angled triangle}$ where $\angle C = 90^{\circ}$.

Note: One may observe that *I* is the ex-center of $\triangle CGH$ opposite *C* (Exercise