Exponential equations

0 00 0 0 7	0.0	hower	
LUILIASZ.			

Image: A mathematical states and a mathem

э

We will learn how to solve basic exponential equations.

3

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

We will deal with the equations of the form

$$a^{f(x)} = b^{g(x)}$$

where a, b > 0 and f, g are real-valued functions. In our examples these will be simple linear or quadratic functions.

0 00 0 0 7	0.0	hower	
LUILIASZ.			

• **step 1** Write both sides as a power of the same number.

- 2

・ロン ・四 ・ ・ ヨン ・ ヨン

- step 1 Write both sides as a power of the same number.
- step 2 Compare the exponents and solve.

3

- step 1 Write both sides as a power of the same number.
- step 2 Compare the exponents and solve.

Example. Solve $3^{2x-1} = 243$

- step 1 Write both sides as a power of the same number.
- step 2 Compare the exponents and solve.

Example. Solve $3^{2x-1} = 243$

$$3^{2x-1} = 243$$

 $3^{2x-1} = 3^5$

lomasz	echowski
10111032	Lectionski

- 31

- **step 1** Write both sides as a power of the same number.
- step 2 Compare the exponents and solve.

Example. Solve $3^{2x-1} = 243$

$$3^{2x-1} = 243$$

 $3^{2x-1} = 3^5$

Now we compare the exponents:

$$2x - 1 = 5$$
$$x = 3$$

- 31

Solve

$$\left(\frac{1}{2}\right)^{x+1} = 4^{x+2}$$

0 00 0 0 7		DOM NO	
TOTAS/			
10111002	_		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Solve

$$\left(\frac{1}{2}\right)^{x+1} = 4^{x+2}$$

We write both sides as powers of 2:

$$\left(\frac{1}{2}\right)^{x+1} = 4^{x+2}$$
$$2^{-x-1} = 2^{2x+4}$$

-				
	0 00 0 0 7	00	hower	100
	Uniasz	_ e	10005	× I
		_		

æ

イロト イ団ト イヨト イヨト

Solve

$$\left(\frac{1}{2}\right)^{x+1} = 4^{x+2}$$

We write both sides as powers of 2:

$$\left(\frac{1}{2}\right)^{x+1} = 4^{x+2}$$
$$2^{-x-1} = 2^{2x+4}$$

Compare exponents:

$$-x - 1 = 2x + 4$$
$$x = -\frac{5}{3}$$

3

<ロ> (日) (日) (日) (日) (日)

Solve:

 $\left(\frac{1}{9}\right)^{x-2} = (\sqrt{3})^{x+6}$

0 00 0 0 7	0.0	hower	
LUILIASZ.			

Solve:

$$\left(\frac{1}{9}\right)^{x-2} = (\sqrt{3})^{x+6}$$

We write both sides as powers of 3:

$$\left(\frac{1}{9}\right)^{x-2} = (\sqrt{3})^{x+6}$$
$$3^{-2x+4} = 3^{\frac{x}{2}+3}$$

Tomasz Lechowski

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Solve:

$$\left(\frac{1}{9}\right)^{x-2} = (\sqrt{3})^{x+6}$$

We write both sides as powers of 3:

$$\left(\frac{1}{9}\right)^{x-2} = (\sqrt{3})^{x+6}$$
$$3^{-2x+4} = 3^{\frac{x}{2}+3}$$

Compare exponents:

$$-2x + 4 = \frac{x}{2} + 3$$
$$x = \frac{2}{5}$$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Solve

$$4\times 8^x = (2\sqrt{2})^{-x}$$

0.000.007	h outre	
TOTAS/		N I
10111002	 	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Solve

$$4\times 8^x = (2\sqrt{2})^{-x}$$

Solution:

-		
0 00 0 0 7	L o c b o u c	100
LUILIASZ.		
0111002	200110110	

- 2

・ロト ・四ト ・ヨト ・ヨト

Solve

$$4\times 8^x = (2\sqrt{2})^{-x}$$

Solution:

$$4 \times 8^{x} = (2\sqrt{2})^{-x}$$
$$2^{2} \times 2^{3x} = 2^{-\frac{3}{2}x}$$
$$2^{3x+2} = 2^{-\frac{3}{2}x}$$
$$3x+2 = -\frac{3}{2}x$$
$$x = -\frac{4}{9}$$

Tomasz Lechowski

January 18, 2023 7 / 11

- 2

・ロト ・四ト ・ヨト ・ヨト

Solve

$$3 \times 81^{x-1} = (\sqrt[3]{3})^{-2x}$$

-				
	0 00 0 0 7		DOM NO	
	LUILIASZ.			
		_		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Solve

$$3 \times 81^{x-1} = (\sqrt[3]{3})^{-2x}$$

Solution (try it on your own first):

(日) (四) (三) (三) (三)

Solve

$$3 \times 81^{x-1} = (\sqrt[3]{3})^{-2x}$$

Solution (try it on your own first):

$$3 \times 81^{x-1} = (\sqrt[3]{3})^{-2x}$$
$$3 \times 3^{4x-4} = 3^{-\frac{2x}{3}}$$
$$3^{4x-3} = 3^{-\frac{2x}{3}}$$
$$4x - 3 = -\frac{2x}{3}$$
$$x = \frac{9}{14}$$

Tomasz Lechowski

- 2

<ロ> (日) (日) (日) (日) (日)

Solve:

$$4\times\left(\frac{1}{\sqrt{2}}\right)^x=\frac{1}{2}\times 16^{x-1}$$

0.000.007	h outre	
TOTAS/		N I
10111002	 	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Solve:

$$4\times\left(\frac{1}{\sqrt{2}}\right)^x=\frac{1}{2}\times 16^{x-1}$$

Solution:

_		
0 00 0 0 7	achowich	
TOTTASZ 1		
	2001101101	

- 2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Solve:

$$4 \times \left(\frac{1}{\sqrt{2}}\right)^{x} = \frac{1}{2} \times 16^{x-1}$$

Solution:

$$4 \times \left(\frac{1}{\sqrt{2}}\right)^{x} = \frac{1}{2} \times 16^{x-1}$$
$$2^{2} \times 2^{-\frac{x}{2}} = 2^{-1} \times 2^{4x-4}$$
$$2^{2-\frac{x}{2}} = 2^{4x-5}$$
$$2 - \frac{x}{2} = 4x - 5$$
$$x = \frac{14}{9}$$

Tomasz Lechowski

January 18, 2023 9 / 11

- 2

・ロト ・四ト ・ヨト ・ヨト

Solve:

$$(\sqrt[3]{2})^{3x^2-3} = 4^{x+1}$$

0.000.007	h outre	
TOTAS/		N I
10111002	 	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Solve:

 $(\sqrt[3]{2})^{3x^2-3} = 4^{x+1}$

Solution:

-			
0 00 0 0 7	0.0	howel	
TOTTASZ.			
- onnabe			

Solve:

$$(\sqrt[3]{2})^{3x^2-3} = 4^{x+1}$$

Solution:

$$(\sqrt[3]{2})^{3x^2-3} = 4^{x+1}$$
$$2^{x^2-1} = 2^{2x+2}$$
$$x^2 - 1 = 2x + 2$$
$$x^2 - 2x - 3 = 0$$
$$x^2 - 2x + 1 = 4$$
$$(x - 1)^2 = 4$$

Tomasz Lechowski

January 18, 2023 10 / 11

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Solve:

$$(\sqrt[3]{2})^{3x^2-3} = 4^{x+1}$$

Solution:

$$(\sqrt[3]{2})^{3x^2-3} = 4^{x+1}$$
$$2^{x^2-1} = 2^{2x+2}$$
$$x^2 - 1 = 2x + 2$$
$$x^2 - 2x - 3 = 0$$
$$x^2 - 2x + 1 = 4$$
$$(x - 1)^2 = 4$$

We get x = 3 or x = -1.

In case of any questions, you can email me at T.J.Lechowski@gmail.com.

Lomacz Lochov	100 00
TOHIASZ LECHOV	NSKI

< □ > < ---->