1. (a) Show that
$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$
. (2)

(b) Hence find the value of
$$\cot \frac{\pi}{8}$$
 in the form $a + b\sqrt{2}$, where $a, b \in \mathbb{Z}$.
(3)

(Total 5 marks)

2. If x satisfies the equation $\sin\left(x+\frac{\pi}{3}\right) = 2\sin x \sin\left(\frac{\pi}{3}\right)$, show that 11 $\tan x = a + b\sqrt{3}$, where $a, b \in \mathbb{Z}^+$.

(Total 6 marks)

3. The graph below shows $y = a \cos(bx) + c$.

Find the value of *a*, the value of *b* and the value of *c*.

(Total 4 marks)

- 4. Consider the function $f: x \to \sqrt{\frac{\pi}{4}} \arccos x$.
 - (a) Find the largest possible domain of *f*.
 - (b) Determine an expression for the inverse function, f^{-1} , and write down its domain.

(4) (Total 8 marks)

5. (a) Show that
$$\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right) = \frac{\pi}{4}$$
.

(b) Hence, or otherwise, find the value of
$$\arctan(2) + \arctan(3)$$
.

6. In triangle ABC, AB = 9 cm, AC = 12 cm, and \hat{B} is twice the size of \hat{C} .

Find the cosine of \hat{C} .

7. The depth, h(t) metres, of water at the entrance to a harbour at t hours after midnight on a particular day is given by

$$h(t) = 8 + 4 \sin\left(\frac{\pi t}{6}\right), 0 \le t \le 24.$$

- (a) Find the maximum depth and the minimum depth of the water.
- (b) Find the values of *t* for which $h(t) \ge 8$.

(3) (Total 6 marks)

(Total 5 marks)

(3)

2

(4)

(2)

(3)

8. Solve $\sin 2x = \sqrt{2} \cos x$, $0 \le x \le \pi$.

(Total 6 marks)

10. Given that $\tan 2\theta = \frac{3}{4}$, find the possible values of $\tan \theta$.

(Total 5 marks)

11. Let $\sin x = s$.

(a) Show that the equation $4 \cos 2x + 3 \sin x \csc^3 x + 6 = 0$ can be expressed as $8s^4 - 10s^2 + 3 = 0$.

(3)

(3)

(b) Hence solve the equation for x, in the interval $[0, \pi]$.

(6) (Total 9 marks)

12. (a) If $\sin (x - \alpha) = k \sin (x + \alpha)$ express $\tan x$ in terms of k and α .

(b) Hence find the values of x between 0° and 360° when
$$k = \frac{1}{2}$$
 and $\alpha = 210^{\circ}$.
(6)

(Total 9 marks)

13. The angle θ satisfies the equation $2 \tan^2 \theta - 5 \sec \theta - 10 = 0$, where θ is in the second quadrant. Find the value of $\sec \theta$.

(Total 6 marks)