Normal distribution 28.02 [47]

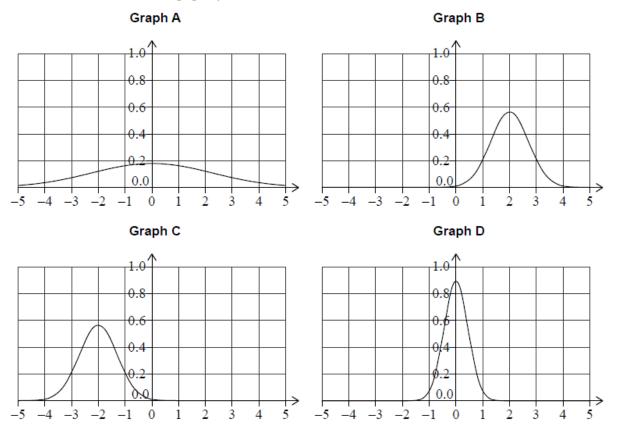
marks]

A factory produces bags of sugar with a labelled weight of $500~\rm g$. The weights of the bags are normally distributed with a mean of $500~\rm g$ and a standard deviation of $3~\rm g$.

1a. \	Write down the percentage of bags that weigh more than $500~ m g.$
	A bag that weighs less than $495~\mathrm{g}$ is rejected by the factory for being underweight.
	Find the probability that a randomly chosen bag is rejected for being [2 marks] underweight.

The masses of Fuji apples are normally	distributed with	a mean of 163	\mathbf{g} and \mathbf{a}
standard deviation of 6.83 g.			

When Fuji apples are picked, they are classified as small, medium, large or extra large depending on their mass. Large apples have a mass of between $172\ \rm g$ and $183\ \rm g.$


rge ap	<u> </u>			

o. Fi	Find the value of k .	R marks
to	The Malthouse Charity Run is a 5 kilometre race. The time taken for each root occupied the race was recorded. The data was found to be normally disting with a mean time of 28 minutes and a standard deviation of 5 minutes. A runner who completed the race is chosen at random.	
. W	Write down the probability that the runner completed the race in more $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1 mark

Consider the following graphs of normal distributions.

4a. In the following table, write down the letter of the corresponding graph [2 marks] next to the given mean and standard deviation.

Mean and standard deviation	Graph
Mean = -2 ; standard deviation = 0.707	
Mean = 0; standard deviation = 0.447	

	At an airport, the weights of suitcases (in kg) were measured. The weignormally distributed with a mean of 20 kg and standard deviation of 3.5	hts are s kg.
4b.	Find the probability that a suitcase weighs less than 15 kg.	[2 marks]
4c.	Any suitcase that weighs more than k kg is identified as excess baggag 19.6 % of the suitcases at this airport are identified as excess baggage. Find the value of k .	e. <i>[2 marks]</i>

	The price per kilogram of tomatoes, in euro, sold in various markets in a city is found to be normally distributed with a mean of 3.22 and a standard deviation of 0.84.
5a.	On the following diagram, shade the region representing the probability [1 mark] that the price of a kilogram of tomatoes, chosen at random, will be higher than 3.22 euro.
5b.	Find the price that is two standard deviations above the mean price. [1 mark]
5c.	Find the probability that the price of a kilogram of tomatoes, chosen at [2 marks] random, will be between 2.00 and 3.00 euro.

To stimulate reasonable pricing, the city offers a free permit to the sellers whose price of a kilogram of tomatoes is in the lowest 20 %.
Find the highest price that a seller can charge and still receive a free permit.

45 minutes and 55 minutes after the school opens.	
A second school, Mulberry Park, also opens at 08:00 every morning. Th arrival times of the students at this school follows exactly the same distribution as Malthouse school.	ne <i>[2 mark</i>
arrival times of the students at this school follows exactly the same distribution as Malthouse school.	
arrival times of the students at this school follows exactly the same	er the
arrival times of the students at this school follows exactly the same distribution as Malthouse school. Given that, on one morning, 15 students arrive at least 60 minutes afte	er the
arrival times of the students at this school follows exactly the same distribution as Malthouse school. Given that, on one morning, 15 students arrive at least 60 minutes afte	er the
arrival times of the students at this school follows exactly the same distribution as Malthouse school. Given that, on one morning, 15 students arrive at least 60 minutes afte	er the
arrival times of the students at this school follows exactly the same distribution as Malthouse school. Given that, on one morning, 15 students arrive at least 60 minutes afte	er the
arrival times of the students at this school follows exactly the same distribution as Malthouse school. Given that, on one morning, 15 students arrive at least 60 minutes afte	er the
arrival times of the students at this school follows exactly the same distribution as Malthouse school. Given that, on one morning, 15 students arrive at least 60 minutes afte	er the
arrival times of the students at this school follows exactly the same distribution as Malthouse school. Given that, on one morning, 15 students arrive at least 60 minutes afte	er the
arrival times of the students at this school follows exactly the same distribution as Malthouse school. Given that, on one morning, 15 students arrive at least 60 minutes afte	er the

Applicants for a job had to complete a mathematics test. The time they took to complete the test is normally distributed with a mean of 53 minutes and a standard deviation of 16.3. One of the applicants is chosen at random.

r 11% of the applicants it took longer than k minutes to complete the test.
r 11% of the applicants it took longer than k minutes to complete the test. and the value of k .

	 ndom variable V is normal	ndom variable. Y is normally distribu	ndom variable. Y is normally distributed with a n	ndom variable X is normally distributed with a mean of 100. \cdot

Let ${\cal R}$ be the shaded region under the curve, to the right of 107. The area of ${\cal R}$ is 0.24.

8a. Write down $\mathrm{P}(X>107)$. [1 mark]

Pind $P(100 < X < 107)$.	[3 mark
Find $\mathrm{P}(93 < X < 107)$.	[2 mark
Find $\mathrm{P}(93 < X < 107)$.	[2 mark
Find $\mathrm{P}(93 < X < 107)$.	[2 mark

© International Baccalaureate Organization 2023 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM