Trigonometry 8.02 [106 marks]

1. Solve the equation $2\cos^2 x + 5\sin x = 4, 0 \le x \le 2\pi$.

[7 marks]

Markscheme

attempt to use $\cos^2 x = 1 - \sin^2 x$ *M1*

$$2\sin^2 x - 5\sin x + 2 = 0$$
 A1

EITHER

attempting to factorise M1

$$(2 \sin x - 1)(\sin x - 2) A1$$

OR

attempting to use the quadratic formula **M1**

$$\sin\,x=rac{5\pm\sqrt{5^2-4 imes2 imes2}}{4}ig(=rac{5\pm3}{4}ig)$$
 A1

THEN

$$\sin x = \frac{1}{2}$$
 (A1)

$$x=rac{\pi}{6},\;rac{5\pi}{6}$$
 A1A1

[7 marks]

2. Let $a = \sin b$, $0 < b < \frac{\pi}{2}$.

[5 marks]

Find, in terms of \emph{b} , the solutions of $\sin 2x = -a, \ 0 \leqslant x \leqslant \pi.$

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

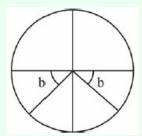
$$\sin 2x = -\sin b$$

EITHER

$$\sin 2x = \sin \left(-b \right)$$
 or $\sin 2x = \sin \left(\pi + b \right)$ or $\sin 2x = \sin \left(2\pi - b \right)$... (M1)

Note: Award M1 for any one of the above, A1 for having final two.

OR



(M1)(A1)

Note: Award *M1* for one of the angles shown with b clearly labelled, *A1* for both angles shown. Do not award *A1* if an angle is shown in the second quadrant and subsequent *A1* marks not awarded.

THEN

$$2x=\pi+b$$
 or $2x=2\pi-b$ (A1)(A1) $x=rac{\pi}{2}+rac{b}{2},\;x=\pi-rac{b}{2}$ A1

[5 marks]

Consider the function $f(x)=2\sin^2x+7\sin2x+\tan x-9, 0\leqslant x<rac{\pi}{2}.$

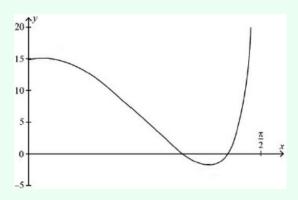
3a. Determine an expression for f'(x) in terms of x.

[2 marks]

Markscheme

$$f'(x) = 4\sin x\cos x + 14\cos 2x + \sec^2 x$$
 (or equivalent) (M1)A1

[2 marks]



A1A1A1A1

Note: Award **A1** for correct behaviour at x=0, **A1** for correct domain and correct behaviour for $x\to \frac{\pi}{2}$, **A1** for two clear intersections with x-axis and minimum point, **A1** for clear maximum point.

[4 marks]

3c. Find the x-coordinate(s) of the point(s) of inflexion of the graph of y=f(x), labelling these clearly on the graph of y=f'(x).

[2 marks]

Markscheme

$$x = 0.0736$$
 A1

$$x = 1.13$$
 A1

[2 marks]

Let $u = \tan x$.

3d. Express $\sin x$ in terms of u.

[2 marks]

Markscheme

attempt to write $\sin x$ in terms of u only **(M1)**

$$\sin x = rac{u}{\sqrt{1+u^2}}$$
 A1

[2 marks]

$$\cos x = rac{1}{\sqrt{1+u^2}}$$
 (A1)

attempt to use $\sin 2x = 2\sin x \cos x \ \left(=2rac{u}{\sqrt{1+u^2}}rac{1}{\sqrt{1+u^2}}
ight)$ (M1)

$$\sin 2x = rac{2u}{1+u^2}$$
 A1

[3 marks]

3f. Hence show that f(x)=0 can be expressed as $u^3-7u^2+15u-9=0$ [2 marks]

Markscheme

 $2\sin^2 x + 7\sin 2x + \tan x - 9 = 0$

$$rac{2u^2}{1+u^2} + rac{14u}{1+u^2} + u - 9 \ (=0)$$
 M1

$$rac{2u^2+14u+u(1+u^2)-9(1+u^2)}{1+u^2}=0$$
 (or equivalent) **A1**

$$u^3 - 7u^2 + 15u - 9 = 0$$
 AG

[2 marks]

3g. Solve the equation f(x)=0, giving your answers in the form $\arctan k$ [3 marks] where $k\in\mathbb{Z}$.

$$u=1 \text{ or } u=3$$
 (M1)

$$x = \arctan(1)$$
 A1

$$x = \arctan(3)$$
 A1

Note: Only accept answers given the required form.

[3 marks]

^{4a.} Show that
$$\cot 2\theta = \frac{1-\tan^2\theta}{2\tan\theta}$$
.

[1 mark]

Markscheme

stating the relationship between \cot and \tan and stating the identity for $\tan 2\theta$

$$\cot 2 heta = rac{1}{ an 2 heta}$$
 and $an 2 heta = rac{2 an heta}{1 - an^2 heta}$

$$\Rightarrow \cot 2\theta = \frac{1-\tan^2\theta}{2\tan\theta}$$
 AG

[1 mark]

4b. Verify that
$$x=\tan\theta$$
 and $x=-\cot\theta$ satisfy the equation $x^2+(2\cot2\theta)\,x-1=0.$

[7 marks]

METHOD 1

attempting to substitute $\tan \theta$ for x and using the result from (a) M1

LHS =
$$an^2 heta + 2 an heta \left(rac{1 - an^2 heta}{2 an heta}
ight) - 1$$
 41

$$\tan^2 \theta + 1 - \tan^2 \theta - 1 = 0 (= RHS)$$
 A1

so
$$x = \tan \theta$$
 satisfies the equation ${\it AG}$

attempting to substitute $-\cot\theta$ for x and using the result from (a)

LHS =
$$\cot^2 \theta - 2 \cot \theta \left(\frac{1 - \tan^2 \theta}{2 \tan \theta} \right) - 1$$

$$=rac{1}{ an^2 heta}-\left(rac{1- an^2 heta}{ an^2 heta}
ight)-1$$
 A1

$$\frac{1}{\tan^2 \theta} - \frac{1}{\tan^2 \theta} + 1 - 1 = 0$$
(= RHS) *A1*

so $x = -\cot\theta$ satisfies the equation ${\bf AG}$

METHOD 2

let $\alpha = \tan \theta$ and $\beta = -\cot \theta$

attempting to find the sum of roots **M1**

$$lpha + eta = an heta - rac{1}{ an heta}$$

$$= rac{ an^2 heta - 1}{ an heta} \quad extbf{AI}$$

$$=-2\cot 2\theta$$
 (from part (a)) **A1**

attempting to find the product of roots **M1**

$$\alpha \beta = \tan \theta \times (-\cot \theta)$$
 A1

$$=-1$$
 A1

the coefficient of x and the constant term in the quadratic are $2\cot 2\theta$ and -1 respectively

hence the two roots are lpha= an heta and $eta=-\cot heta$

[7 marks]

METHOD 1

 $x= anrac{\pi}{12}$ and $x=-\cotrac{\pi}{12}$ are roots of $x^2+\left(2\cotrac{\pi}{6}
ight)x-1=0$

Note: Award **R1** if only $x= anrac{\pi}{12}$ is stated as a root of $x^2+\left(2\cotrac{\pi}{6}\right)x-1=0.$

$$x^2 + 2\sqrt{3}x - 1 = 0$$
 A1

attempting to solve **their** quadratic equation *M1*

$$x=-\sqrt{3}\pm 2$$
 A1

$$an rac{\pi}{12} > 0 \ (-\cot rac{\pi}{12} < 0)$$

so
$$anrac{\pi}{12}=2-\sqrt{3}$$
 ${m AG}$

METHOD 2

attempting to substitute $heta=rac{\pi}{12}$ into the identity for an 2 heta

$$an rac{\pi}{6} = rac{2 an rac{\pi}{12}}{1 - an^2 rac{\pi}{12}}$$

$$an^2 rac{\pi}{12} + 2\sqrt{3} an rac{\pi}{12} - 1 = 0$$
 A1

attempting to solve **their** quadratic equation *M1*

$$anrac{\pi}{12} = -\sqrt{3} \pm 2$$
 A1

$$\tan \frac{\pi}{12} > 0$$
 R1

so
$$\tan\frac{\pi}{12}=2-\sqrt{3}$$
 AG

[5 marks]

4d. Using the results from parts (b) and (c) find the exact value of $\tan\frac{\pi}{24}-\cot\frac{\pi}{24}.$

[6 marks]

Give your answer in the form $a+b\sqrt{3}$ where a, $b\in\mathbb{Z}.$

 $anrac{\pi}{24}-\cotrac{\pi}{24}$ is the sum of the roots of $x^2+\left(2\cotrac{\pi}{12}
ight)x-1=0$

 $anrac{\pi}{24}-\cotrac{\pi}{24}=-2\cotrac{\pi}{12}$ A1

$$=rac{-2}{2-\sqrt{3}}$$
 A1

attempting to rationalise **their** denominator (M1)

$$= -4 - 2\sqrt{3}$$
 A1A1

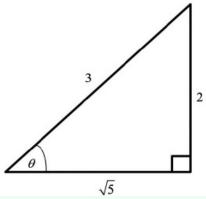
[6 marks]

5. It is given that $\csc\theta = \frac{3}{2}$, where $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$. Find the exact value of [4 marks] $\cot\theta$.

Markscheme

METHOD 1

attempt to use a right angled triangle **M1**



correct placement of all three values and θ seen in the triangle $\cot \theta < 0$ (since $\csc \theta > 0$ puts θ in the second quadrant)

$$\cot heta = -rac{\sqrt{5}}{2}$$
 A1

Note: Award **M1A1R0A0** for $\cot \theta = \frac{\sqrt{5}}{2}$ seen as the final answer

The **R1** should be awarded independently for a negative value only given as a final answer.

METHOD 2

Attempt to use $1 + \cot^2 \theta = \csc^2 \theta$ **M1**

$$1 + \cot^2 \theta = \frac{9}{4}$$

$$\cot^2 \theta = \frac{5}{4}$$
 (A1)

$$\cot \theta = \pm \frac{\sqrt{5}}{2}$$

 $\cot \, heta < 0$ (since $\csc \, heta > 0$ puts heta in the second quadrant) $\qquad extbf{\it R1}$

$$\cot heta = -rac{\sqrt{5}}{2}$$
 A1

Note: Award **M1A1R0A0** for $\cot \theta = \frac{\sqrt{5}}{2}$ seen as the final answer

The **R1** should be awarded independently for a negative value only given as a final answer.

METHOD 3

$$\sin \theta = \frac{2}{3}$$

attempt to use $\sin^2 \theta + \cos^2 \theta = 1$

$$\frac{4}{9} + \cos^2 \theta = 1$$

$$\cos^2 \theta = \frac{5}{9}$$
 (A1)

$$\cos \theta = \pm \frac{\sqrt{5}}{3}$$

 $\cos \theta < 0$ (since $\csc \theta > 0$ puts θ in the second quadrant)

$$\cos \theta = -\frac{\sqrt{5}}{3}$$

$$\cot \theta = -\frac{\sqrt{5}}{2} \qquad \textbf{A1}$$

Note: Award **M1A1R0A0** for $\cot \theta = \frac{\sqrt{5}}{2}$ seen as the final answer

The **R1** should be awarded independently for a negative value only given as a final answer.

[4 marks]

6. A and B are acute angles such that $\cos A = \frac{2}{3}$ and $\sin B = \frac{1}{3}$.

[7 marks]

Show that
$$\cos\left(2A+B\right)=-rac{2\sqrt{2}}{27}-rac{4\sqrt{5}}{27}.$$

attempt to use $\cos{(2A+B)} = \cos{2A}\cos{B} - \sin{2A}\sin{B}$ (may be seen later)

attempt to use any double angle formulae (seen anywhere) M1 attempt to find either $\sin A$ or $\cos B$ (seen anywhere) M1

$$\cos A = rac{2}{3} \Rightarrow \sin A \left(= \sqrt{1 - rac{4}{9}}
ight) = rac{\sqrt{5}}{3}$$
 (A1)

$$\sin B = rac{1}{3} \Rightarrow \cos B \left(= \sqrt{1 - rac{1}{9}} = rac{\sqrt{8}}{3}
ight) = rac{2\sqrt{2}}{3}$$
 A1

$$\cos 2A \left(= 2\cos^2 A - 1 \right) = -\frac{1}{9}$$
 A1

$$\sin 2A \, (= 2 \sin A \cos A) = \frac{4\sqrt{5}}{9}$$
 A1

So
$$\cos{(2A+B)}=\left(-\frac{1}{9}\right)\left(\frac{2\sqrt{2}}{3}\right)-\left(\frac{4\sqrt{5}}{9}\right)\left(\frac{1}{3}\right)$$

$$=-rac{2\sqrt{2}}{27}-rac{4\sqrt{5}}{27}$$
 AG

[7 marks]

^{7a.} Show that $(\sin x + \cos x)^2 = 1 + \sin 2x$.

[2 marks]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$\left(\sin x + \cos x\right)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x$$
 M1A1

Note: Do not award the **M1** for just $\sin^2 x + \cos^2 x$.

Note: Do not award A1 if correct expression is followed by incorrect working.

$$=1+\sin 2x$$
 AG

[2 marks]

7b. Show that $\sec 2x + \tan 2x = \frac{\cos x + \sin x}{\cos x - \sin x}$

[4 marks]

$$\sec 2x + \tan 2x = rac{1}{\cos 2x} + rac{\sin 2x}{\cos 2x}$$
 M1

Note: $\it{M1}$ is for an attempt to change both terms into sine and cosine forms (with the same argument) or both terms into functions of $\tan x$.

$$= \frac{1 + \sin 2x}{\cos 2x}$$

$$=\frac{(\sin x + \cos x)^2}{\cos^2 x - \sin^2 x} \qquad A1A1$$

Note: Award A1 for numerator, A1 for denominator.

$$=\frac{\left(\sin x + \cos x\right)^2}{\left(\cos x - \sin x\right)\left(\cos x + \sin x\right)} \qquad \textbf{M1}$$

$$= \frac{\cos x + \sin x}{\cos x - \sin x} \qquad \mathbf{AG}$$

Note: Apply MS in reverse if candidates have worked from RHS to LHS.

Note: Alternative method using $\tan 2x$ and $\sec 2x$ in terms of $\tan x$.

[4 marks]

^{7c.} Hence or otherwise find $\int_0^{\frac{\pi}{6}}(\sec 2x+\tan 2x)\,\mathrm{d}x$ in the form $\ln\left(a+\sqrt{b}\right)$ where $a,\,b\in\mathbb{Z}.$

[9 marks]

Markscheme

METHOD 1

$$\int_0^{\frac{\pi}{6}} \left(\frac{\cos x + \sin x}{\cos x - \sin x} \right) \mathrm{d}x \qquad \mathbf{A1}$$

Note: Award A1 for correct expression with or without limits.

EITHER

$$=\left[-\ln\left(\cos x-\sin x
ight)
ight]_0^{rac{\pi}{6}}$$
 or $\left[\ln\left(\cos x-\sin x
ight)
ight]_{rac{\pi}{6}}^{0}$ (M1)A1A1

Note: Award *M1* for integration by inspection or substitution, *A1* for $\ln(\cos x - \sin x)$, *A1* for completely correct expression including limits.

$$=-\ln\left(\cosrac{\pi}{6}-\sinrac{\pi}{6}
ight)+\ln\left(\cos0-\sin0
ight)$$
 M1

Note: Award M1 for substitution of limits into their integral and subtraction.

$$=-\ln\left(rac{\sqrt{3}}{2}-rac{1}{2}
ight)$$
 (A1)

OR

$$let u = \cos x - \sin x \qquad \textbf{M1}$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = -\sin x - \cos x = -\left(\sin x + \cos x\right)$$

$$-\int_{1}^{rac{\sqrt{3}}{2}-rac{1}{2}}\left(rac{1}{u}
ight)\mathrm{d}u$$
 A1A1

Note: Award A1 for correct limits even if seen later, A1 for integral.

$$= [-\ln u]_1^{rac{\sqrt{3}}{2}-rac{1}{2}} ext{ or } [\ln u]_{rac{\sqrt{3}}{2}-rac{1}{2}}^1$$

$$=-\mathrm{ln}\left(rac{\sqrt{3}}{2}-rac{1}{2}
ight)(+\mathrm{ln}\,1)$$
 M1

THEN

$$=\ln\left(\frac{2}{\sqrt{3}-1}\right)$$

Note: Award *M1* for both putting the expression over a common denominator and for correct use of law of logarithms.

$$=\ln\left(1+\sqrt{3}
ight)$$
 (M1)A1

METHOD 2

$$\left[rac{1}{2}\ln\left(an 2x + \sec 2x
ight) - rac{1}{2}\ln\left(\cos 2x
ight)
ight]_0^{rac{\pi}{6}}$$
 A1A1

$$=rac{1}{2}\mathrm{ln}\left(\sqrt{3}+2
ight)-rac{1}{2}\mathrm{ln}\left(rac{1}{2}
ight)-0$$
 A1A1(A1)

$$=rac{1}{2}\mathrm{ln}\left(4+2\sqrt{3}
ight)$$
 M1

$$=rac{1}{2}\mathrm{ln}\left(\left(1+\sqrt{3}
ight)^2
ight)$$
 M1A1

$$=\ln\left(1+\sqrt{3}
ight)$$
 A1

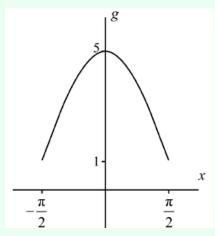
[9 marks]

Consider the function $g\left(x\right)=4\cos x+1$, $a\leqslant x\leqslant \frac{\pi}{2}$ where $a<\frac{\pi}{2}.$

8a. For $a=-\frac{\pi}{2}$, sketch the graph of $y=g\left(x\right)$. Indicate clearly the maximum and minimum values of the function.

[3 marks]

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.



concave down and symmetrical over correct domain **A1** indication of maximum and minimum values of the function (correct range) **A1A1**

[3 marks]

8b. Write down the least value of a such that g has an inverse.

[1 mark]

Markscheme

a = 0 **A1**

Note: Award **A1** for a = 0 only if consistent with their graph.

[1 mark]

8c. For the value of a found in part (b), write down the domain of g^{-1} . [1 mark]

 $1 \leqslant x \leqslant 5$ A1

Note: Allow FT from their graph.

[1 mark]

8d. For the value of a found in part (b), find an expression for $g^{-1}(x)$. [2 marks]

Markscheme

$$y = 4\cos x + 1$$

$$x = 4\cos y + 1$$

$$\frac{x-1}{4} = \cos y \qquad \textbf{(M1)}$$

$$\Rightarrow y = \arccos\left(\frac{x-1}{4}\right)$$

$$\Rightarrow g^{-1}\left(x
ight)=rccos\left(rac{x-1}{4}
ight)$$
 A1

[2 marks]

9. Solve the equation $\sec^2 x + 2\tan x = 0, \ 0 \leqslant x \leqslant 2\pi.$

[5 marks]

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

use of
$$\sec^2 x = \tan^2 x + 1$$
 M1

$$\tan^2 x + 2\tan x + 1 = 0$$

$$(\tan x + 1)^2 = 0$$
 (M1)

$$\tan x = -1$$
 A1

$$x=rac{3\pi}{4}, rac{7\pi}{4}$$
 A1A1

METHOD 2

$$\frac{1}{\cos^2 x} + \frac{2\sin x}{\cos x} = 0 \quad \mathbf{M1}$$

$$1 + 2\sin x \cos x = 0$$

$$\sin 2x = -1$$
 M1A1

$$2x = \frac{3\pi}{2}, \ \frac{7\pi}{2}$$

$$x=rac{3\pi}{4}, rac{7\pi}{4}$$
 AIAI

Note: Award **A1A0** if extra solutions given or if solutions given in degrees (or both).

[5 marks]

10a. Find the value of
$$\sin\frac{\pi}{4} + \sin\frac{3\pi}{4} + \sin\frac{5\pi}{4} + \sin\frac{7\pi}{4} + \sin\frac{9\pi}{4}$$
. [2 marks]

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$\sin\frac{\pi}{4} + \sin\frac{3\pi}{4} + \sin\frac{5\pi}{4} + \sin\frac{7\pi}{4} + \sin\frac{9\pi}{4} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}$$
(M1)A1

Note: Award M1 for 5 equal terms with \() + \() or - signs.

[2 marks]

10b. Show that $rac{1-\cos 2x}{2\sin x}\equiv \sin x,\; x
eq k\pi$ where $k\in\mathbb{Z}.$

[2 marks]

Markscheme

$$\frac{1-\cos 2x}{2\sin x} \equiv \frac{1-(1-2\sin^2 x)}{2\sin x} \quad \mathbf{M1}$$

$$\equiv rac{2 \sin^2 \! x}{2 \sin x}$$
 A1

$$\equiv \sin x$$
 AG

[2 marks]

10c. Use the principle of mathematical induction to prove that

[9 marks]

$$\sin x + \sin 3x + \ldots + \sin (2n-1)x = rac{1-\cos 2nx}{2\sin x}, \; n \in \mathbb{Z}^+, \; x
eq k\pi$$
 where $k \in \mathbb{Z}$.

let
$$\mathrm{P}(n):\sin x+\sin 3x+\ldots+\sin(2n-1)x\equiv \frac{1-\cos 2nx}{2\sin x}$$
 if $n=1$
$$\mathrm{P}(1):\frac{1-\cos 2x}{2\sin x}\equiv \sin x \text{ which is true (as proved in part (b))} \qquad \textbf{\textit{R1}}$$
 assume $\mathrm{P}(k)$ true, $\sin x+\sin 3x+\ldots+\sin(2k-1)x\equiv \frac{1-\cos 2kx}{2\sin x} \qquad \textbf{\textit{M1}}$

Notes: Only award M1 if the words "assume" and "true" appear. Do not award M1 for "let n=k" only. Subsequent marks are independent of this M1.

consider P(k+1):

$$\begin{array}{l} \mathrm{P}(k+1): \sin x + \sin 3x + \ldots + \sin (2k-1)x + \sin (2k+1)x \equiv \frac{1-\cos 2(k+1)x}{2\sin x} \\ LHS = \sin x + \sin 3x + \ldots + \sin (2k-1)x + \sin (2k+1)x \quad \mathbf{M1} \\ \equiv \frac{1-\cos 2kx}{2\sin x} + \sin (2k+1)x \quad \mathbf{A1} \\ \equiv \frac{1-\cos 2kx + 2\sin x \sin (2k+1)x}{2\sin x} \\ \equiv \frac{1-\cos 2kx + 2\sin x \cos x \sin 2kx + 2\sin^2 x \cos 2kx}{2\sin x} \quad \mathbf{M1} \\ \equiv \frac{1-((1-2\sin^2 x)\cos 2kx - \sin 2x \sin 2kx)}{2\sin x} \quad \mathbf{M1} \\ \equiv \frac{1-(\cos 2x\cos 2kx - \sin 2x \sin 2kx)}{2\sin x} \quad \mathbf{A1} \\ \equiv \frac{1-\cos (2kx + 2x)}{2\sin x} \quad \mathbf{A1} \\ \equiv \frac{1-\cos (2kx + 2x)}{2\sin x} \quad \mathbf{A1} \\ \equiv \frac{1-\cos (2kx + 2x)}{2\sin x} \quad \mathbf{A1} \\ \end{array}$$
 so if true for $n=k$, then also true for $n=k+1$

Note: Accept answers using transformation formula for product of sines if steps are shown clearly.

as true for n=1 then true for all $n\in\mathbb{Z}^+$

Note: Award *R1* only if candidate is awarded at least 5 marks in the previous steps.

[9 marks]

Markscheme

EITHER

$$\sin x + \sin 3x = \cos x \Rightarrow rac{1-\cos 4x}{2\sin x} = \cos x$$
 M1

$$\Rightarrow 1 - \cos 4x = 2 \sin x \cos x, \ (\sin x \neq 0)$$
 A1

$$\Rightarrow 1 - (1 - 2\sin^2 2x) = \sin 2x$$
 M1

$$\Rightarrow \sin 2x(2\sin 2x - 1) = 0$$
 M1

$$\Rightarrow \sin 2x = 0 \text{ or } \sin 2x = rac{1}{2}$$
 A1

$$2x=\pi,\;2x=rac{\pi}{6}\; ext{and}\;2x=rac{5\pi}{6}$$

OR

$$\sin x + \sin 3x = \cos x \Rightarrow 2\sin 2x\cos x = \cos x$$
 M1A1

$$\Rightarrow (2\sin 2x - 1)\cos x = 0, \ (\sin x \neq 0)$$
 M1A1

$$\Rightarrow \sin 2x = rac{1}{2} ext{ of } \cos x = 0$$
 A1

$$2x=rac{\pi}{6},\;2x=rac{5\pi}{6}$$
 and $x=rac{\pi}{2}$

THEN

$$\therefore x=rac{\pi}{2}, \; x=rac{\pi}{12} \; ext{and} \; x=rac{5\pi}{12}$$
 A1

Note: Do not award the final **A1** if extra solutions are seen.

[6 marks]

