Trigonometry 8.02 [106 marks]

1. Solve the equation $2\cos^2 x + 5\sin x = 4, 0 \le x \le 2\pi$.

[7 marks]

2. Let $a = \sin b, \ 0 < b < \frac{\pi}{2}$.

[5 marks]

Find, in terms of b, the solutions of $\sin 2x = -a, \ 0 \leqslant x \leqslant \pi$.

Consider the function $f(x)=2\sin^2x+7\sin2x+\tan x-9, 0\leqslant x<rac{\pi}{2}.$

3a. Determine an expression for f'(x) in terms of x.

[2 marks]

3b. Sketch a graph of y=f'(x) for $0\leqslant x<\frac{\pi}{2}.$

[4 marks]

3c. Find the x-coordinate(s) of the point(s) of inflexion of the graph of y=f(x), labelling these clearly on the graph of y=f'(x).

[2 marks]

Let $u = \tan x$.

3d. Express $\sin x$ in terms of u.

[2 marks]

3e. Express $\sin 2x$ in terms of u.

[3 marks]

- 3f. Hence show that f(x)=0 can be expressed as $u^3-7u^2+15u-9=0$ [2 marks]
- 3g. Solve the equation f(x)=0, giving your answers in the form $\arctan k$ [3 marks] where $k\in\mathbb{Z}.$
- ^{4a.} Show that $\cot 2\theta = \frac{1-\tan^2\theta}{2\tan\theta}$.

[1 mark]

4b. Verify that $x=\tan\theta$ and $x=-\cot\theta$ satisfy the equation $x^2+(2\cot2\theta)\,x-1=0.$

[7 marks]

4c. Hence, or otherwise, show that the exact value of $an rac{\pi}{12} = 2 - \sqrt{3}$.

[5 marks]

4d. Using the results from parts (b) and (c) find the exact value of $\tan\frac{\pi}{24}-\cot\frac{\pi}{24}.$

[6 marks]

Give your answer in the form $a+b\sqrt{3}$ where a, $b\in\mathbb{Z}.$

- 5. It is given that $\csc\theta=\frac{3}{2}$, where $\frac{\pi}{2}<\theta<\frac{3\pi}{2}$. Find the exact value of <code>[4 marks]</code> $\cot\theta$.
- 6. A and B are acute angles such that $\cos A = \frac{2}{3}$ and $\sin B = \frac{1}{3}$.

[7 marks]

Show that $\cos\left(2A+B\right)=-rac{2\sqrt{2}}{27}-rac{4\sqrt{5}}{27}.$

7a. Show that $(\sin x + \cos x)^2 = 1 + \sin 2x$.

[2 marks]

7b. Show that $\sec 2x + \tan 2x = \frac{\cos x + \sin x}{\cos x - \sin x}$.

[4 marks]

^{7c.} Hence or otherwise find $\int_0^{\frac{\pi}{6}} (\sec 2x + \tan 2x) \,\mathrm{d}x$ in the form $\ln\left(a+\sqrt{b}\right)$ where $a,\,b\in\mathbb{Z}.$

[9 marks]

Consider the function $g\left(x\right)=4\cos x+1$, $a\leqslant x\leqslant \frac{\pi}{2}$ where $a<\frac{\pi}{2}$.

8a. For $a=-\frac{\pi}{2}$, sketch the graph of $y=g\left(x\right)$. Indicate clearly the maximum and minimum values of the function.

[3 marks]

8b. Write down the least value of \boldsymbol{a} such that \boldsymbol{g} has an inverse.

[1 mark]

8c. For the value of a found in part (b), write down the domain of g^{-1} .

[1 mark]

8d. For the value of a found in part (b), find an expression for $g^{-1}(x)$. [2 marks]

9. Solve the equation $\sec^2 x + 2\tan x = 0, \ 0 \leqslant x \leqslant 2\pi$.

[5 marks]

10a. Find the value of $\sin \frac{\pi}{4} + \sin \frac{3\pi}{4} + \sin \frac{5\pi}{4} + \sin \frac{7\pi}{4} + \sin \frac{9\pi}{4}$.

[2 marks]

10b. Show that $rac{1-\cos 2x}{2\sin x}\equiv \sin x,\; x
eq k\pi$ where $k\in\mathbb{Z}.$

[2 marks]

10c. Use the principle of mathematical induction to prove that $[9 \ marks] \\ \sin x + \sin 3x + \ldots + \sin (2n-1)x = \tfrac{1-\cos 2nx}{2\sin x}, \ n \in \mathbb{Z}^+, \ x \neq k\pi \ \text{where} \ k \in \mathbb{Z}.$

10d. Hence or otherwise solve the equation $\sin x + \sin 3x = \cos x$ in the interval $0 < x < \pi$.

[6 marks]

© International Baccalaureate Organization 2023
International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM