Vectors 10.02 [60 marks]

A line L_1 passes through the points A(0,1,8) and B(3,5,2).

| |
 |
• • • | ••• |
 |
 |
 |
 | |
|--|------|------|------|------|------|------|------|------|------|------|-----------|-----|------|------|------|---------|--|
| |
 |
• • • | |
 |
 |
 |
••• | |
| |
 | |
 |
 |
 |
 | |

1b. Hence, write down a vector equation for L_1 .

[2 marks]

1c. A second line L_2 , has equation $\mathbf{r} = \begin{pmatrix} 1 \\ 13 \\ -14 \end{pmatrix} + s \begin{pmatrix} p \\ 0 \\ 1 \end{pmatrix}$. [3 marks]

Given that L_1 and L_2 are perpendicular, show that p=2.

Given that L_1 and L_2 are perpendicular, show that p=2.

1d. The lines L_1 and L_1 intersect at C(9, 13, z). Find z. [5 marks]

1f. Hence or otherwise, find one point on L_2 which is $\sqrt{5}$ units from C. [3 marks]

2. Find the Cartesian equation of plane /7 containing the points A (6, 2, 1) [6 marks] and B (3, -1, 1) and perpendicular to the plane x + 2y - z - 6 = 0.

.

The points A, B and C have the following position vectors with respect to an origin O.

$$\overrightarrow{OA} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$$
$$\overrightarrow{OB} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$$
$$\overrightarrow{OC} = \mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$$

4a. Find the vector equation of the line (BC).

[3 marks]

4c. Find the Cartesian equation of the plane Π_1 , which passes through C and [3 marks] is perpendicular to \overrightarrow{OA} .

The plane Π_2 contains the points O, A and B and the plane Π_3 contains the points O, A and C.

4e. Verify that $2\mathbf{j} + \mathbf{k}$ is perpendicular to the plane Π_2 . [3 marks]

4f. Find a vector perpendicular to the plane Π_3 .

[1 mark]

5. Find the coordinates of the point of intersection of the planes defined by [5 marks] the equations x + y + z = 3, x - y + z = 5 and x + y + 2z = 6.

Consider the lines l_1 and l_2 defined by

$$l_1: \mathbf{r} = \begin{pmatrix} -3\\-2\\a \end{pmatrix} + \beta \begin{pmatrix} 1\\4\\2 \end{pmatrix}$$
 and $l_2: \frac{6-x}{3} = \frac{y-2}{4} = 1-z$ where a is a constant.

Given that the lines l_1 and l_2 intersect at a point P,

6a. find the value of a;

[4 marks]

Г

 $\ensuremath{\mathbb{C}}$ International Baccalaureate Organization 2023

Printed for 2 SPOLECZNE LICEUM