Vectors 10.02 [60 marks]

A line L_1 passes through the points A(0,1,8) and B(3,5,2).

1a. Find \overrightarrow{AB} .	[2 marks]
----------------------------------	-----------

[2 marks]

1b. Hence, write down a vector equation for L_1 .

1c.	(1)		(p)	[3 marks]
1c. A second line L_2 , has equation $r =$	13	+s	0	
	$\left(-14\right)$	1	(1)	
Given that L_1 and L_2 are perpendic	ular, shov	w that	: <i>p</i> =	= 2.

1d. The lines L_1 and L_1 intersect at $C(9,\ 1)$	13, z). Find z .	[5 marks]
---	--------------------	-----------

1e. Find a unit vector in the direction of L_2 .	[2 marks]
1f. Hence or otherwise, find one point on L_2 which is $\sqrt{5}$ units from C.	[3 marks]
2. Find the Cartesian equation of plane \varPi containing the points ${ m A}(6,2,1)$	[6 marks]

۷.	The the calculation of plane π containing the points $\mathbf{A}(0, 2, 1)$	
	and $\mathrm{B}\left(3,-1,1 ight)$ and perpendicular to the plane $x+2y-z-6=0.$	

3. Given that $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} \neq \mathbf{0}$ prove that $\mathbf{a} + \mathbf{c} = s\mathbf{b}$ where s is a [4 marks] scalar.

The points A, B and C have the following position vectors with respect to an origin O.

 $\overrightarrow{OA} = 2i + j - 2k$ $\mathbf{OB} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ OC = i + 3j + 3k4a. Find the vector equation of the line (BC). [3 marks] 4b. Determine whether or not the lines (OA) and (BC) intersect. [6 marks] 4c. Find the Cartesian equation of the plane Π_1 , which passes through C and [3 marks] is perpendicular to OA. 4d. Show that the line (BC) lies in the plane Π_1 . [2 marks] The plane Π_2 contains the points O, A and B and the plane Π_3 contains the points O, A and C. 4e. Verify that $2\mathbf{j} + \mathbf{k}$ is perpendicular to the plane Π_2 . [3 marks] 4f. Find a vector perpendicular to the plane Π_3 . [1 mark] 4g. Find the acute angle between the planes Π_2 and Π_3 . [4 marks]

5. Find the coordinates of the point of intersection of the planes defined by [5 marks] the equations x + y + z = 3, x - y + z = 5 and x + y + 2z = 6.

Consider the lines l_1 and l_2 defined by

$$l_1: \mathbf{r} = \begin{pmatrix} -3\\ -2\\ a \end{pmatrix} + \beta \begin{pmatrix} 1\\ 4\\ 2 \end{pmatrix}$$
 and $l_2: \frac{6-x}{3} = \frac{y-2}{4} = 1-z$ where a is a constant.

Given that the lines l_1 and l_2 intersect at a point P,

6a. find the value of a;

6b. determine the coordinates of the point of intersection P.

Printed for 2 SPOLECZNE LICEUM

[4 marks]

[2 marks]