Logarithms part 2

_			
		1000	

2

< □ > < □ > < □ > < □ > < □ >

Introduction

Let's start with the simple equation:

$$\log_2 8 = 3$$

This is true because:

$$2^3 = 8$$

3

A D N A B N A B N A B N

Introduction

Let's start with the simple equation:

$$\log_2 8 = 3$$

This is true because:

$$2^3 = 8$$

In general we have $\log_a b = c$ if and only if $a^c = b$, with the restriction that a and b have to be positive real numbers and $a \neq 1$.

(日) (四) (日) (日) (日)

Simple equations

This already allows us to solve a lot of simple logarithmic equations.

э

(日) (四) (日) (日) (日)

This already allows us to solve a lot of simple logarithmic equations. For example:

 $\log_3(x-2)=4$

3

イロト イボト イヨト イヨト

This already allows us to solve a lot of simple logarithmic equations. For example:

$$\log_3(x-2)=4$$

By definition we get that:

$$3^4 = x - 2$$

So *x* = 83.

(日) (四) (日) (日) (日)

Simple equations

Always remember to check the answers you get.

-				
	0 00 0 0 7		DOM NO	
	LUILIASZ.			
		_		

3

< □ > < □ > < □ > < □ > < □ >

Always remember to check the answers you get. Consider the equation:

 $\log_x 16 = 2$

イロト イボト イヨト イヨト

Always remember to check the answers you get. Consider the equation:

 $\log_x 16 = 2$

We get that:

 $x^2 = 16$

0 00 0 0 7	L o c b o u c l	
TOTTAS/		
	2001101101	

3

A D N A B N A B N A B N

Always remember to check the answers you get. Consider the equation:

 $\log_{x} 16 = 2$

We get that:

$$x^2 = 16$$

So x = 4 or x = -4, but the base of the logarithm cannot be negative, so finally we have only one solution x = 4.

イロト 不得 トイヨト イヨト 二日

a)
$$\log_5(2x+3) = 2$$

a)
$$\log_5(2x+3) = 2$$

 $2x+3 = 5^2$, so $x = 11$.

b) $\log_{x-2} 27 = 3$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

a)
$$\log_5(2x+3) = 2$$

 $2x+3 = 5^2$, so $x = 11$.

b)
$$\log_{x-2} 27 = 3$$

 $(x-2)^3 = 27$, so $x = 5$.

c)
$$\log_4 \frac{1}{8} = x + 2$$

a)
$$\log_5(2x+3) = 2$$

 $2x+3 = 5^2$, so $x = 11$.

b)
$$\log_{x-2} 27 = 3$$

 $(x-2)^3 = 27$, so $x = 5$.

c)
$$\log_4 \frac{1}{8} = x + 2$$

 $4^{x+2} = \frac{1}{8}$, so $x = -\frac{7}{2}$.

a)
$$\log_{\sqrt{2}}(3x-1) = 8$$

a)
$$\log_{\sqrt{2}}(3x - 1) = 8$$

 $3x - 1 = (\sqrt{2})^8$, so $x = \frac{17}{3}$.

b) $\log_{2x+1} 81 = 625$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のへで

a)
$$\log_{\sqrt{2}}(3x - 1) = 8$$

 $3x - 1 = (\sqrt{2})^8$, so $x = \frac{17}{3}$.

b)
$$\log_{2x+1} 81 = 625$$

 $(2x+1)^4 = 625$, so $x = 2$.

c)
$$\log_9 \sqrt{3} = 2x - 3$$

a)
$$\log_{\sqrt{2}}(3x - 1) = 8$$

 $3x - 1 = (\sqrt{2})^8$, so $x = \frac{17}{3}$.

b)
$$\log_{2x+1} 81 = 625$$

 $(2x+1)^4 = 625$, so $x = 2$.

c)
$$\log_9 \sqrt{3} = 2x - 3$$

 $9^{2x-3} = \sqrt{3}$, so $x = \frac{13}{8}$.

More complicated equations require the use of the properties of logarithms. The three basic rules we will be using are:

1.
$$\log_a b + \log_a c = \log_a(bc)$$

(日) (四) (日) (日) (日)

More complicated equations require the use of the properties of logarithms. The three basic rules we will be using are:

1.
$$\log_a b + \log_a c = \log_a(bc)$$

Example $\log_6 4 + \log_6 9 = \log_6 36 = 2$

イロト イポト イヨト イヨト 二日

More complicated equations require the use of the properties of logarithms. The three basic rules we will be using are:

1.
$$\log_a b + \log_a c = \log_a(bc)$$

Example $\log_6 4 + \log_6 9 = \log_6 36 = 2$

2.
$$\log_a b - \log_a c = \log_a \left(\frac{b}{c}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

More complicated equations require the use of the properties of logarithms. The three basic rules we will be using are:

1.
$$\log_a b + \log_a c = \log_a(bc)$$

Example $\log_6 4 + \log_6 9 = \log_6 36 = 2$

2.
$$\log_a b - \log_a c = \log_a \left(\frac{b}{c}\right)$$

Example $\log_5 1000 + \log_5 8 = \log_5 125 = 3$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More complicated equations require the use of the properties of logarithms. The three basic rules we will be using are:

1.
$$\log_a b + \log_a c = \log_a(bc)$$

 $\mathsf{Example}\,\log_6 4 + \log_6 9 = \log_6 36 = 2$

2.
$$\log_a b - \log_a c = \log_a \left(\frac{b}{c}\right)$$

Example $\log_5 1000 + \log_5 8 = \log_5 125 = 3$

$$3. \ k \log_a b = \log_a(b^k)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More complicated equations require the use of the properties of logarithms. The three basic rules we will be using are:

1.
$$\log_a b + \log_a c = \log_a(bc)$$

 $\mathsf{Example}\, \log_6 4 + \log_6 9 = \log_6 36 = 2$

2.
$$\log_a b - \log_a c = \log_a \left(\frac{b}{c}\right)$$

 $\mathsf{Example}\, \log_5 1000 + \log_5 8 = \log_5 125 = 3$

$$3. \ k \log_a b = \log_a(b^k)$$

Example
$$\log_2(2^{10}) = 10 \log_2 2 = 10$$

イロト 不得下 イヨト イヨト 二日

Consider the equation:

$$\log_2(x+1) - \log_2(x-1) = 3$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider the equation:

$$\log_2(x+1) - \log_2(x-1) = 3$$

Using the second property we can rearrange the equation to:

$$\log_2\left(\frac{x+1}{x-1}\right) = 3$$

0.0	2227	0.0	hower	100
топ	lidsz	Let.	10005	× I
		_		

3

イロト イポト イヨト イヨト

Consider the equation:

$$\log_2(x+1) - \log_2(x-1) = 3$$

Using the second property we can rearrange the equation to:

$$\log_2\left(\frac{x+1}{x-1}\right) = 3$$

Now we can use the definition of logarithm to get:

$$\frac{x+1}{x-1} = 2^3$$

-					
	0.000	0.07	0.00	house	1.0
	ош	dSZ	Let	TUVVS	r i

(日) (四) (日) (日) (日)

Consider the equation:

$$\log_2(x+1) - \log_2(x-1) = 3$$

Using the second property we can rearrange the equation to:

$$\log_2\left(\frac{x+1}{x-1}\right) = 3$$

Now we can use the definition of logarithm to get:

$$\frac{x+1}{x-1} = 2^3$$

Which gives x + 1 = 8x - 8, so we get that $x = \frac{9}{7}$.

(日) (四) (日) (日) (日)

Now consider a slightly different equation:

$$\log_2(x-1) - \log_2(x+1) = 3$$

æ

A D N A B N A B N A B N

Now consider a slightly different equation:

$$\log_2(x-1) - \log_2(x+1) = 3$$

Again we use the second property:

$$\log_2\left(\frac{x-1}{x+1}\right) = 3$$

0.0	2227	0.0	hower	100
топ	lidsz	Let.	10005	× I
		_		

3

Now consider a slightly different equation:

$$\log_2(x-1) - \log_2(x+1) = 3$$

Again we use the second property:

$$\log_2\left(\frac{x-1}{x+1}\right) = 3$$

And using the definition of logarithm to get:

$$\frac{x-1}{x+1} = 2^3$$

Now consider a slightly different equation:

$$\log_2(x-1) - \log_2(x+1) = 3$$

Again we use the second property:

$$\log_2\left(\frac{x-1}{x+1}\right) = 3$$

And using the definition of logarithm to get:

$$\frac{x-1}{x+1} = 2^3$$

Which gives x - 1 = 8x + 8 and we get that $x = -\frac{9}{7}$, but this would mean that we have a negative number inside the logarithm, which is not allowed, so the equation has no solutions.

Tomasz Lechowski

22 lutego 2023 9 / 16

Consider:

$$\log_2 x + \log_2(x+2) = 3$$

0 00 0 0 7		DOM NO	
LUILIASZ.			
	_		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider:

$$\operatorname{og}_2 x + \operatorname{log}_2(x+2) = 3$$

We use the first property:

 $\log_2(x^2+2x)=3$

000007	Lochov	100 01
TOTASZ		MSRI.
	Lecense	

3

イロト イポト イヨト イヨト

Consider:

$$\log_2 x + \log_2(x+2) = 3$$

We use the first property:

$$\log_2(x^2+2x)=3$$

Using the definition of logarithm to get:

$$x^2 + 2x = 2^3$$

3

Consider:

$$\log_2 x + \log_2(x+2) = 3$$

We use the first property:

$$\log_2(x^2+2x)=3$$

Using the definition of logarithm to get:

$$x^2 + 2x = 2^3$$

Which gives (x + 4)(x - 2) = 0 and we get two solutions x = -4 and x = 2, but x = -4 would give us a negative number inside the logarithm, so in the end we have one solution x = 2.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Now consider:

$$\log_3\sqrt{x} + \log_3\sqrt[3]{x} = \frac{5}{3}$$

0 00 0 0 7	achowic	
TOHIASZ	Lechovsi	ч т

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Now consider:

$$\log_3 \sqrt{x} + \log_3 \sqrt[3]{x} = \frac{5}{3}$$

We use the third property to get (remember $\sqrt{x} = x^{\frac{1}{2}}$ and $\sqrt[3]{x} = x^{\frac{1}{3}}$):

$$\frac{1}{2}\log_3 x + \frac{1}{3}\log_3 x = \frac{5}{3}$$

イロト イポト イヨト イヨト 二日

Now consider:

$$\log_3 \sqrt{x} + \log_3 \sqrt[3]{x} = \frac{5}{3}$$

We use the third property to get (remember $\sqrt{x} = x^{\frac{1}{2}}$ and $\sqrt[3]{x} = x^{\frac{1}{3}}$):

$$\frac{1}{2}\log_3 x + \frac{1}{3}\log_3 x = \frac{5}{3}$$

Multiplying both sides by 6, adding the logarithms and then dividing by 5 we get:

$$\log_3 x = 2$$

		< 문 ► < 문 ►
Tomasz Lechowski	Batory 1pre IB	22 lutego 20

Now consider:

$$\log_3 \sqrt{x} + \log_3 \sqrt[3]{x} = \frac{5}{3}$$

We use the third property to get (remember $\sqrt{x} = x^{\frac{1}{2}}$ and $\sqrt[3]{x} = x^{\frac{1}{3}}$):

$$\frac{1}{2}\log_3 x + \frac{1}{3}\log_3 x = \frac{5}{3}$$

Multiplying both sides by 6, adding the logarithms and then dividing by 5 we get:

$$\log_3 x = 2$$

Which gives $x = 3^2$, so x = 9.

Lomooc-	- 00	- hour	10 101
TOHIAS	Z LEU	.110/0	/SKI
	_		

Next slide contains practice questions. Try them yourselves first, before checking the answers.

3

a)
$$\log_{16} x + \log_{16} (x - 3) = \frac{1}{2}$$

a)
$$\log_{16} x + \log_{16} (x - 3) = \frac{1}{2}$$

We get the equation $x^2 - 3x = 4$, which has two solutions, but only x = 4 is correct.

3

a)
$$\log_{16} x + \log_{16} (x - 3) = \frac{1}{2}$$

We get the equation $x^2 - 3x = 4$, which has two solutions, but only x = 4 is correct.

b)
$$\log_5 4x - \log_5(1-x) = -1$$

3

a)
$$\log_{16} x + \log_{16} (x - 3) = \frac{1}{2}$$

We get the equation $x^2 - 3x = 4$, which has two solutions, but only x = 4 is correct.

b)
$$\log_5 4x - \log_5(1 - x) = -1$$

We get the equation $\frac{4x}{1-x} = \frac{1}{5}$, which gives $x = \frac{1}{21}$.

3

a)
$$\log_{16} x + \log_{16} (x - 3) = \frac{1}{2}$$

We get the equation $x^2 - 3x = 4$, which has two solutions, but only x = 4 is correct.

b)
$$\log_5 4x - \log_5(1-x) = -1$$

We get the equation $\frac{4x}{1-x} = \frac{1}{5}$, which gives $x = \frac{1}{21}$.

c) $\log_2 x^3 - \log_2 \sqrt[3]{x^2} = 14$

イロト 不得 トイヨト イヨト 二日

a)
$$\log_{16} x + \log_{16} (x - 3) = \frac{1}{2}$$

We get the equation $x^2 - 3x = 4$, which has two solutions, but only x = 4 is correct.

b)
$$\log_5 4x - \log_5(1 - x) = -1$$

We get the equation $\frac{4x}{1-x} = \frac{1}{5}$, which gives $x = \frac{1}{21}$.

c)
$$\log_2 x^3 - \log_2 \sqrt[3]{x^2} = 14$$

We get $x = 2^6 = 64$.

イロト 不得 トイヨト イヨト 二日

Change of base

Another rule for logarithms we need to know is the change of base formula:

$$\log_a b = \frac{\log_c b}{\log_c a}$$

0.000.007	h outre	
TOTAS/		N I
10111002	 	

э

Change of base

Another rule for logarithms we need to know is the change of base formula:

$$\log_a b = \frac{\log_c b}{\log_c a}$$

For example:

$$\log_4 8 = \frac{\log_2 8}{\log_2 4} = \frac{3}{2}$$

3

A D N A B N A B N A B N

Calculate the following using the change of base formula:

a) $\log_9 \frac{1}{3} =$

イロト 不得 トイヨト イヨト 二日

Calculate the following using the change of base formula:

a)
$$\log_9 \frac{1}{3} = \frac{\log_3 \frac{1}{3}}{\log_3 9} = -\frac{1}{2}$$

3

イロト イポト イヨト イヨト

Calculate the following using the change of base formula:

a)
$$\log_9 \frac{1}{3} = \frac{\log_3 \frac{1}{3}}{\log_3 9} = -\frac{1}{2}$$

b) $\log_{\sqrt{5}} \frac{1}{125} =$

- 20

イロト 不得 トイヨト イヨト

Calculate the following using the change of base formula:

a)
$$\log_9 \frac{1}{3} = \frac{\log_3 \frac{1}{3}}{\log_3 9} = -\frac{1}{2}$$

b)
$$\log_{\sqrt{5}} \frac{1}{125} = \frac{\log_5 \frac{1}{125}}{\log_5 \sqrt{5}} = \frac{-3}{\frac{1}{2}} = -6$$

イロト 不得 トイヨト イヨト 二日

Calculate the following using the change of base formula:

a)
$$\log_9 \frac{1}{3} = \frac{\log_3 \frac{1}{3}}{\log_3 9} = -\frac{1}{2}$$

b)
$$\log_{\sqrt{5}} \frac{1}{125} = \frac{\log_5 \frac{1}{125}}{\log_5 \sqrt{5}} = \frac{-3}{\frac{1}{2}} = -6$$

c) $\log_1 6 \frac{1}{\sqrt[3]{2}} =$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Calculate the following using the change of base formula:

a)
$$\log_9 \frac{1}{3} = \frac{\log_3 \frac{1}{3}}{\log_3 9} = -\frac{1}{2}$$

b)
$$\log_{\sqrt{5}} \frac{1}{125} = \frac{\log_5 \frac{1}{125}}{\log_5 \sqrt{5}} = \frac{-3}{\frac{1}{2}} = -6$$

c) $\log_1 6 \frac{1}{\sqrt[3]{2}} = \frac{\log_2 \frac{1}{\sqrt[3]{2}}}{\log_2 16} = \frac{-\frac{1}{3}}{4} = -\frac{1}{12}$

Tomasz Lechowski

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In case of any questions, you can email me at T.J.Lechowski@gmail.com.

Lomacz Lochov	100 00
TOHIASZ LECHOV	NSKI

Image: A matrix