1.	Solve $\log_2 x + \log_2(x - 2) = 3$, for $x > 2$.	
----	--	--

		(Total 7 marks)
recognizing log $a + \log b = \log ab$ (seen anywhere) e.g. $\log_2(x(x-2)), x^2 - 2x$	(A1)	
recognizing $\log_a b = x \iff a^x = b$ (seen anywhere) e.g. $2^3 = 8$	(A1)	
correct simplification e.g. $x(x-2) = 2^3$, $x^2 - 2x - 8$	A1	
evidence of correct approach to solve e.g. factorizing, quadratic formula	(M1)	
correct working	A1	
$e.g.(x-4)(x+2), \frac{2 \pm \sqrt{30}}{2}$ x = 4	A2	N3
		[7]

2. (a) Find $\log_2 32$.

(1)

(b) Given that $\log_2\left(\frac{32^x}{8^y}\right)$ can be written as px + qy, find the value of p and of q.

(4) (Total 5 marks)

(a)	5	A1	N1	
(b)	METHOD 1			
	$\log_{2}\left(\frac{32^{x}}{8^{y}}\right) = \log_{2} 32^{x} - \log_{2} 8^{y}$	(A1)		
	$= x \log_2 32 - y \log_2 8$	(A1)		
	$\log_2 8 = 3$	(A1)		
	p = 5, q = -3 (accept $5x - 3y$)	A1	N3	
	METHOD 2			
	$\frac{32^x}{8^y} = \frac{(2^5)^x}{(2^3)^y}$	(A1)		
	$=\frac{2^{5x}}{2^{3y}}$	(A1)		
	$=2^{5x-3y}$	(A1)		
	$log_2 (2^{5x-3y}) = 5x - 3y$ p = 5, q = -3 (accept $5x - 3y$)	A1	N3	[5]

3. Given that $p = \log_a 5$, $q = \log_a 2$, express the following in terms of p and/or q.

(a) $\log_a 10$

(b) $\log_a 8$

(c) $\log_a 2.5$ (Total 6 marks) (a) $\log_a 10 = \log_a (5 \times 2)$ (M1) $= \log_a 5 + \log_a 2$ = p + qA1 N2(b) $\log_a 8 = \log_a 2^3$ (M1) $= 3 \log_a 2$ = 3qN2A1 (c) $\log_a 2.5 = \log_a \frac{5}{2}$ (M1) $= \log_a 5 - \log_a 2$ = p - qN2 A1 [6] 4. Let $\log_c 3 = p$ and $\log_c 5 = q$. Find an expression in terms of p and q for (a) (i) log _c 15; (ii) $\log_c 25$. (b) Find the value of d if $\log_d 6 = \frac{1}{2}$. (Total 6 marks) (i) $\log_c 15 = \log_c 3 + \log_c 5$ (a) (A1) = p + qA1 N2(ii) $\log_c 25 = 2 \log_c 5$ (A1) = 2qA1 N2(b) METHOD 1 $d^{\frac{1}{2}} = 6$ M1d = 36A1 N1METHOD 2 For changing base M1 $\frac{\log_{10} 6}{\log_{10} d} = \frac{1}{2} , 2\log_{10} 6 = \log_{10} d$ eg d = 36A1 N1 [6]

Find the **exact** solution of the equation $9^{2x} = 27^{(1-x)}$. 6.

(b) $\ln\left(\frac{\sqrt{a}}{b}\right)$

(a) $\ln a^3 b$

(a) $\ln a^3 b = 3\ln a + \ln b$

 $\ln a^3 b = 3p + q$

(b) $\ln \frac{\sqrt{a}}{b} = \frac{1}{2} \ln a - \ln b$

 $\ln \frac{\sqrt{a}}{b} = \frac{1}{2} p - q$

(A1)(A1)

N3

N3

A1

A1

(A1)(A1)

(Total 6 marks)

[6]

(Total 6 marks)

METHOD 1

5.

$9 = 3^2, 27 = 3^3$	(A1)(A1)
expressing as a power of 3, $(3^2)^{2x} = (3^3)^{1-x}$	(M1)
$3^{4x} = 3^{3-3x}$	(A1)
4x = 3 - 3x	(A1)
7 <i>x</i> = 3	

$$\Rightarrow x = \frac{3}{7} \tag{A1} \tag{C6}$$

Let $\ln a = p$, $\ln b = q$. Write the following expressions in terms of p and q.

METHOD 2

 $2x\log 9 = (1-x)\log 27$ (M1)(A1)(A1) $\frac{2x}{1-x} = \frac{\log 27}{\log 9} \left(= \frac{3}{2} \right)$ (A1)

$$4x = 3 - 3x$$
 (A1)
 $7x = 3$

$$\Rightarrow x = \frac{3}{7} \tag{A1} \tag{C6}$$

Notes: Candidates may use a graphical method. Award (M1)(A1)(A1) for a sketch, (A1) for showing the point of intersection, (A1) for 0.4285...., and (A1) for $\frac{3}{7}$.

[6]

7.

- (a) Given that $\log_3 x \log_3 (x 5) = \log_3 A$, express A in terms of x.
- (b) Hence or otherwise, solve the equation $\log_3 x \log_3 (x 5) = 1$.

(Total 6 marks)

(a)
$$\log_3 x - \log_3 (x-5) = \log_3 \left(\frac{x}{x-5}\right)$$
 (A1)

$$A = \frac{x}{x-5}$$
(A1) (C2)
Note: If candidates have an incorrect or no answer to part (a)
avard (A1)(A0)
if $\log \left(\frac{x}{x-5}\right)$ seen in part (b).
(b) EITHER
 $\log_3 \left(\frac{x}{x-5}\right) = 1$
(M1)(A1)(A1)
 $x = 3x - 15$
 $-2x = -15$
 $x = \frac{15}{2}$
(A1) (C4)
OR
 $\frac{\log_{10} \left(\frac{x}{x-5}\right)}{\log_{10} 3} = 1$
(M1)(A1)

$$\log_{10}\left(\frac{x}{x-5}\right) = \log_{10} 3$$
 (A1)
x = 7.5 (A1) (C4)

8. Let $p = \log_{10} x$, $q = \log_{10} y$ and $r = \log_{10} z$.

Write the expression $\log_{10}\left(\frac{x}{y^2\sqrt{z}}\right)$ in terms of *p*, *q* and *r*.

(Total 6 marks)

$$\log_{10}\left(\frac{x}{y^2\sqrt{z}}\right) = \log_{10} x - \log_{10} y^2 - \log_{10} \sqrt{z}$$
(A1)(A1)(A1)

$$\log_{10} y^2 = 2 \log_{10} y \tag{A1}$$

$$\log_{10}\sqrt{z} = \frac{1}{2}\log z \tag{A1}$$

$$\log_{10}\left(\frac{x}{y^2\sqrt{z}}\right) = \log_{10} x - 2\log y - \frac{1}{2}\log z$$

= $p - 2q - \frac{1}{2}r$ (A1) (C2)(C2)(C2)

9. Let $a = \log x$, $b = \log y$, and $c = \log z$.

Write
$$\log\left(\frac{x^2\sqrt{y}}{z^3}\right)$$
 in terms of *a*, *b* and *c*.

(Total 6 marks)

$$\log x^2 = 2\log x \tag{A1}$$

$$\log \sqrt{y} = \frac{1}{2} \log y \tag{A1}$$

$$\log z^3 = 3\log z \tag{A1}$$

$$2\log x + \frac{1}{2}\log y - 3\log z$$
 (A1)(A1)

$$2a + \frac{1}{2}b - 3c$$
 (A1) (C6)

10. Given that $\log_5 x = y$, express each of the following in terms of *y*.

- (a) $\log_5 x^2$ (b) $\log_5\left(\frac{1}{x}\right)$
- (c) $\log_{25} x$

(Total 6 marks)

(a)
$$\log_5 x^2 = 2 \log_5 x$$
 (M1)
 $= 2y$ (A1) (C2)
(b) $\log_5 \frac{1}{x} = -\log_5 x$ (M1)
 $= -y$ (A1) (C2)
(c) $\log_{25} x = \frac{\log_5 x}{\log_5 25}$ (M1)
 $= \frac{1}{2}y$ (A1) (C2)

[6]

11. Solve the equation
$$\log_9 81 + \log_9 \frac{1}{9} + \log_9 3 = \log_9 x$$
.

(Total 4 marks)

[4]

$$\log 81 + \log_9 \left(\frac{1}{9}\right) + \log_9 3 = \log_9 \left[81 \left(\frac{1}{9}\right)^3 \right]$$
(M2)
= log₉ 27
 $\Rightarrow x = 27$ (A1)
(A1)

$$\Rightarrow x = 27$$
 (A1) (C4)

Solve the equation $\log_{27} x = 1 - \log_{27} (x - 0.4)$.

12.

(Total 6 marks)

$$\begin{array}{cccc} \log_{27} (x(x-0.4)) = 1 & (M1)(A1) \\ x^2 - 0.4x = 27 & (M1) \\ x = 5.4 \text{ or } x = -5 & (G2) \\ x = 5.4 & (A1) & (C6) \\ \end{array}$$
Note: Award (C5) for giving both roots.

[6]

13. Let
$$\log_{10}P = x$$
, $\log_{10}Q = y$ and $\log_{10}R = z$. Express $\log_{10}\left(\frac{P}{QR^3}\right)^2$ in terms of x, y and z.

(Total 4 marks)

$$\log_{10} \left(\frac{P}{QR^{3}}\right)^{2} = 2\log_{10} \left(\frac{P}{QR^{3}}\right)$$
(M1)
$$2\log_{10} \left(\frac{P}{QR^{3}}\right) = 2(\log_{10}P - \log_{10}(QR^{3}))$$
(M1)
$$= 2(\log_{10}P - \log_{10}Q - 3\log_{10}R)$$
(M1)
$$= 2(x - y - 3z)$$
(M1)

$$= 2(x - y - 5z)$$

= 2x - 2y - 6z or 2(x - y - 3z) (A1)

14. If $\log_a 2 = x$ and $\log_a 5 = y$, find in terms of x and y, expressions for

(a)
$$\log_2 5;$$

(b) $\log_a 20$.

(Total 4 marks)

(a) $\log_2 5 = \frac{\log_a 5}{\log_a 2}$ (M1) $= \frac{y}{x}$ (A1) (C2) (b) $\log_a 20 = \log_a 4 + \log_a 5 \text{ or } \log_a 2 + \log_a 10$ (M1) $= 2 \log_a 2 + \log_a 5$ = 2x + y (A1) (C2)

[4]

[4]

15. Solve the equation $9^{x-1} = \left(\frac{1}{3}\right)^{2x}$.

(Total 4 marks)

16. Solve the equation $4^{3x-1} = 1.5625 \times 10^{-2}$.

$$4^{3x-1} = 1.5625 \times 10^{-2}$$

$$(3x-1)\log_{10} 4 = \log_{10} 1.5625 - 2$$

$$\Rightarrow 3x - 1 = \frac{\log_{10} 1.5625 - 2}{\log_{10} 4}$$

$$\Rightarrow 3x - 1 = -3$$

$$\Rightarrow x = -\frac{2}{3}$$
(A1)
(A1)
(A2)

(Total 4 marks)

[4]