Differential Calculus Intro [93

marks]

1. Find the equation of the tangent to the curve $y = e^{2x} - 3x$ at the point [5 marks] where x = 0.

2. Consider the curve with equation $y=ig(2x-1){
m e}^{kx}$, where $x\in{\mathbb R}$ and $\circ[5\circ[5marks]]$ $k\in{\mathbb Q}.$

The tangent to the curve at the point where x = 1 is parallel to the line $y = 5e^k x$. Find the value of k.

.....

The function f is defined for all $x \in \mathbb{R}$. The line with equation y = 6x - 1 is the tangent to the graph of f at x = 4.

3a. Write down the value of f'(4).

[1 mark]

The function g is defined for all $x\in\mathbb{R}$ where $g(x){=}x^2-3x$ and $h(x){=}f(g(x)).$

3c. Find h(4).

[2 marks]

3d. Hence find the equation of the tangent to the graph of h at x=4. [3 marks]

The curve C has equation $\mathrm{e}^{2y}=x^3+y.$

4a. Show that $\frac{dy}{dx} = \frac{3x^2}{2e^{2y}-1}$. [3 marks]

 4b. The tangent to C at the point P is parallel to the y-axis.
 [4 marks]

 Find the x-coordinate of P.

A function f is defined by $f(x) = x\sqrt{1-x^2}$ where $-1 \le x \le 1$. The graph of y = f(x) is shown below.

5a. Show that f is an odd function.

[2 marks]

5b. The range of f is $a\leq y\leq b$, where $a,\;b\in\mathbb{R}.$

Find the value of a and the value of b.

Consider the curve C given by $y=x-xy\ln(xy)$ where $x>0,\ y>0.$

6b. Hence find the equation of the tangent to	C at the point where $x=1.$	[5 marks]
---	-----------------------------	-----------

.

Consider the functions $f(x) = -(x-h)^2 + 2k$ and $g(x) = \mathrm{e}^{x-2} + k$ where $h, \ k \in \mathbb{R}.$

7a. Find f'(x).

[1 mark]

The graphs of f and g have a common tangent at x=3.

^{7b.} Show that $h=rac{\mathrm{e}+6}{2}.$	[3 marks]

^{'C.} Hence, show that $k=\mathrm{e}+rac{\mathrm{e}^2}{4}.$	[3 marks]

Let
$$y = rac{\ln x}{x^4}$$
 for $x > 0.$

8a. Show that $\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{1 - 4 \ln x}{x^5}$.

. . .

[3 marks]

Consider the function defined by $f(x)rac{\ln x}{x^4}$ for x>0 and its graph y=f(x).

8b. The graph of f has a horizontal tangent at point ${
m P}.$ Find the coordinates *[5 marks]* of ${
m P}.$

.

⁸C. Given that $f''(x) = rac{20\ln x - 9}{x^6}$, show that P is a local maximum point. [3 /

[3 marks]

8d. Solve f(x) > 0 for x > 0.

[2 marks]

8e. Sketch the graph of f, showing clearly the value of the x-intercept and [3 marks] the approximate position of point P.

Consider the function f defined by $f(x) = \ln \left(x^2 - 16
ight)$ for x > 4.

The following diagram shows part of the graph of f which crosses the x-axis at point A, with coordinates (a, 0). The line L is the tangent to the graph of f at the point B.

9a. Find the exact value of a.

[3 marks]

9b. Given that the gradient of L is $\frac{1}{3}$, find the x-coordinate of B.

[6 marks]

 ••

Consider the graph of the function $f(x) = x^2 - \frac{k}{x}$.

10a. Write down f'(x).

[3 marks]

The equation of the tangent to the graph of y = f(x) at x = -2 is 2y = 4 - 5x.

10b. Write down the gradient of this tangent.

[1 mark]

Consider the curve C defined by $y^2 = \sin{(xy)}, y
eq 0.$

11a. Show that	d <i>y</i>	$y \mathrm{cos}\left(xy ight)$	[5 marks]
Show that	dx	$2y - x \cos(xy)$	

Cell Call	

[5 marks]

^{11b.} Prove that, when $rac{\mathrm{d} y}{\mathrm{d} x}=0\ ,\ y=\pm 1.$

11c. Hence find the coordinates of all points on C, for $0 < x < 4\pi$, where [5 marks] $rac{\mathrm{d}y}{\mathrm{d}x} = 0.$

© International Baccalaureate Organization 2023 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

٦

Printed for 2 SPOLECZNE LICEUM