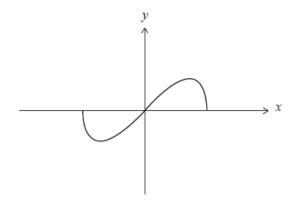
Differential Calculus Intro [93]

marks]

- 2. Consider the curve with equation $y=\left(2x-1\right)\mathrm{e}^{kx}$, where $x\in\mathbb{R}$ and \quad [5 marks] $k\in\mathbb{Q}.$

The tangent to the curve at the point where x=1 is parallel to the line $y=5\mathrm{e}^kx$. Find the value of k.

The curve C has equation $e^{2y} = x^3 + y$.


^{3a.} Show that
$$\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{3x^2}{2\mathrm{e}^{2y}-1}$$
.

[3 marks]

3b. The tangent to ${\cal C}$ at the point P is parallel to the y-axis. Find the x-coordinate of P.

[4 marks]

A function f is defined by $f(x)=x\sqrt{1-x^2}$ where $-1\leq x\leq 1$. The graph of y=f(x) is shown below.

4a. Show that f is an odd function.

[2 marks]

4b. The range of f is $a \leq y \leq b$, where $a, \ b \in \mathbb{R}$.

[6 marks]

Find the value of a and the value of b.

The function f is defined for all $x\in\mathbb{R}.$ The line with equation y=6x-1 is the tangent to the graph of f at x=4.

5a. Write down the value of $f^{\,\prime}(4).$

[1 mark]

5b. Find f(4).

[1 mark]

The function g is defined for all $x \in \mathbb{R}$ where $g(x) = x^2 - 3x$ and h(x) = f(g(x)).

5c. Find h(4).

[2 marks]

5d. Hence find the equation of the tangent to the graph of h at x=4.

[3 marks]

Consider the curve C given by $y=x-xy\ln(xy)$ where $x>0,\;y>0.$

^{6a.} Show that $\frac{\mathrm{d}\,y}{\mathrm{d}\,x} + \Big(x\frac{\mathrm{d}\,y}{\mathrm{d}\,x} + y\Big)(1 + \ln(xy)) = 1.$

[3 marks]

6b. Hence find the equation of the tangent to C at the point where x=1. [5 marks]

Consider the functions $f(x){=}-{(x-h)}^2+2k$ and $g(x){=}\mathrm{e}^{x-2}+k$ where $h,\ k\in\mathbb{R}.$

7a. Find f'(x).

[1 mark]

The graphs of f and g have a common tangent at x=3.

7b. Show that $h=rac{\mathrm{e}+6}{2}$.

[3 marks]

7c. Hence, show that $k=\mathrm{e}+\frac{\mathrm{e}^2}{4}$.

[3 marks]

Let
$$y = \frac{\ln x}{x^4}$$
 for $x > 0$.

8a. Show that
$$\frac{\mathrm{d}\,y}{\mathrm{d}\,x}=\frac{1-4\ln x}{x^5}$$
.

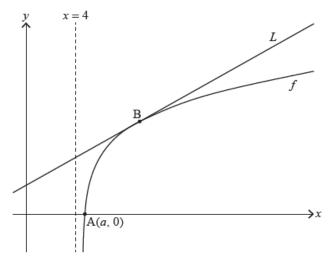
[3 marks]

Consider the function defined by $f(x) \frac{\ln x}{x^4}$ for x>0 and its graph y=f(x).

8b. The graph of f has a horizontal tangent at point P. Find the coordinates \cite{D} marks of P.

8c. Given that f '' $(x)=\frac{20\ln x-9}{x^6}$, show that P is a local maximum point.

[3 marks]


8d. Solve f(x) > 0 for x > 0.

[2 marks]

8e. Sketch the graph of f, showing clearly the value of the x-intercept and $\ \ [3\ marks]$ the approximate position of point P.

Consider the function f defined by $f(x) = \ln \left(x^2 - 16 \right)$ for x > 4.

The following diagram shows part of the graph of f which crosses the x-axis at point A, with coordinates (a,0). The line L is the tangent to the graph of f at the point B.

9a. Find the exact value of a.

[3 marks]

9b. Given that the gradient of L is $\frac{1}{3}$, find the x-coordinate of B.

[6 marks]

Consider the graph of the function $f(x) = x^2 - \frac{k}{x}$.

10a. Write down f'(x).

[3 marks]

The equation of the tangent to the graph of y=f(x) at x=-2 is 2y=4-5x.

10b. Write down the gradient of this tangent.

[1 mark]

10c. Find the value of k.

[2 marks]

Consider the curve C defined by $y^2=\sin{(xy)}, y \neq 0$.

11a. Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y\cos\left(xy\right)}{2y - x\cos\left(xy\right)}$.

[5 marks]

^{11b.} Prove that, when $rac{\mathrm{d}y}{\mathrm{d}x}=0\ ,\ y=\pm1.$

[5 marks]

11c. Hence find the coordinates of all points on C, for $0 < x < 4\pi$, where $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$.

[5 marks]

© International Baccalaureate Organization 2023
International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM