Kinematics [147 marks]

A particle moves in a straight line such that its velocity, $v~{\rm ms}^{-1}$, at time t seconds is given by

 $v = 4t^2 - 6t + 9 - 2\sin(4t), 0 \le t \le 1.$

The particle's acceleration is zero at t = T.

1a. Find the value of T.

[2 marks]

1b. Let s_1 be the distance travelled by the particle from t = 0 to t = T and [3 marks] let s_2 be the distance travelled by the particle from t = T to t = 1.

Show that $s_2 > s_1$.

A particle moves along a straight line so that its velocity, $v \,\mathrm{m\,s^{-1}}$, after t seconds is given by $v(t) = \mathrm{e}^{\sin t} + 4 \sin t$ for $0 \le t \le 6$.

2a. Find the value of t when the particle is at rest. [2 marks]

2c. Find the total distance travelled by the particle.

[2 marks]

A particle moves in a straight line such that its velocity, $v \,\mathrm{m\,s^{-1}}$, at time t seconds is given by $v = \frac{(t^2+1)\cos t}{4}, \ 0 \le t \le 3$.

3a. Determine when the particle changes its direction of motion. [2 marks]

3b. Find the times when the particle's acceleration is $-1.9 \,\mathrm{m\,s^{-2}}$.

[3 marks]

A particle moves in a straight line. The velocity, $v \, {
m ms}^{-1}$, of the particle at time t seconds is given by $v(t) = t \, \sin t - 3$, for $0 \le t \le 10$.

The following diagram shows the graph of v.

4a. Find the smallest value of t for which the particle is at rest. [2 marks]

. .

4c. Find the acceleration of the particle when t = 7.

.

A particle P moves in a straight line such that after time t seconds, its velocity, v in ms^{-1} , is given by $v = e^{-3t} \sin 6 t$, where $0 < t < \frac{\pi}{2}$.

5a. Find the times when P comes to instantaneous rest.

[2 marks]

[2 marks]

At time t, P has displacement s(t); at time t = 0, s(0) = 0.

5b. Find an expression for s in terms of t.

.....

[7 marks]

5c. Find the maximum displacement of P, in metres, from its initial position. [2 marks]

5d.	Find the total distance travelled by P in the first 1.5 seconds of its	[2 marks]
	motion.	

At successive times when the acceleration of P is 0 ms^{-2} , the velocities of P form a geometric sequence. The acceleration of P is zero at times t_1, t_2, t_3 where $t_1 < t_2 < t_3$ and the respective velocities are v_1, v_2, v_3 .

[2 marks]

5e. Show that, at these times, $\tan 6t = 2$.

5f.	Hence	show	that	v_2		v_3	=	$-e^{-}$	$-\frac{\pi}{2}$
				v_1	1	v_2			

A rocket is travelling in a straight line, with an initial velocity of $140\,\rm m\,s^{-1}.$ It accelerates to a new velocity of $500\,\rm m\,s^{-1}$ in two stages.

During the first stage its acceleration, $a \,\mathrm{m}\,\mathrm{s}^{-2}$, after t seconds is given by $a\left(t\right)=240\sin\left(2t\right)$, where $0\leqslant t\leqslant k$.

6a. Find an expression for the velocity, $v \text{ m s}^{-1}$, of the rocket during the first [4 marks] stage.

The first stage continues for k seconds until the velocity of the rocket reaches $375~{\rm m\,s^{-1}}.$

6b. Find the distance that the rocket travels during the first stage. [4 marks]

.

6c. During the second stage, the rocket accelerates at a constant rate. The *[6 marks]* distance which the rocket travels during the second stage is the same as the distance it travels during the first stage.

Find the total time taken for the two stages.

A body moves in a straight line such that its velocity, $v \,\mathrm{ms}^{-1}$, after t seconds is given by $v = 2\sin\left(\frac{t}{10} + \frac{\pi}{5}\right)\csc\left(\frac{t}{30} + \frac{\pi}{4}\right)$ for $0 \leqslant t \leqslant 60$.

The following diagram shows the graph of v against t. Point A is a local maximum and point B is a local minimum.

7a. Determine the coordinates of point A and the coordinates of point B. *[4 marks]*

The body first comes to rest at time $t=t_1.$ Find

7c. the value of t_1 .

7d. the distance travelled between t = 0 and $t = t_1$.

[2 marks]

7f. Find the distance travelled in the first 30 seconds.

[3 marks]

Ζ.	

A particle moves along a straight line so that its velocity, $v \,\mathrm{m\,s^{-1}}$, after t seconds is given by $v\left(t\right)=1.4^t-2.7$, for $0\leq t\leq 5$.

9a. Find when the particle is at rest.

9b. Find the acceleration of the particle when t = 2.

[2 marks]

 •••••

[2 marks]

10. Note: In this question, distance is in metres and time is in [6 marks] seconds.

A particle moves along a horizontal line starting at a fixed point A. The velocity v of the particle, at time t, is given by $v(t) = \frac{2t^2 - 4t}{t^2 - 2t + 2}$, for $0 \le t \le 5$. The following diagram shows the graph of v

There are *t*-intercepts at (0, 0) and (2, 0).

Find the maximum distance of the particle from A during the time $0\leqslant t\leqslant 5$ and justify your answer.

A particle P moves along the x-axis. The velocity of P is $v \ge s^{-1}$ at time t seconds, where $v(t) = 4 + 4t - 3t^2$ for $0 \le t \le 3$. When t = 0, P is at the origin O.

11a. Find the value of t when P reaches its maximum velocity. [2 marks]

[5 marks]

11c. Sketch a graph of v against t, clearly showing any points of intersection with the axes.

The acceleration, $a \text{ ms}^{-2}$, of a particle moving in a horizontal line at time t seconds, $t \ge 0$, is given by a = -(1+v) where $v \text{ ms}^{-1}$ is the particle's velocity and v > -1.

At t = 0, the particle is at a fixed origin O and has initial velocity $v_0 \text{ ms}^{-1}$.

12a. By solving an appropriate differential equation, show that the particle's [6 marks] velocity at time t is given by $v(t) = (1 + v_0)e^{-t} - 1$.

. .

Initially at O, the particle moves in the positive direction until it reaches its maximum displacement from O. The particle then returns to O.

Let s metres represent the particle's displacement from O and s_{\max} its maximum displacement from O.

12b. Show that the time T taken for the particle to reach s_{max} satisfies the [2 marks] equation $e^T = 1 + v_0$.

12c. By solving an appropriate differential equation and using the result from[5 marks] part (b) (i), find an expression for $s_{\rm max}$ in terms of v_0 .

Let v(T-k) represent the particle's velocity k seconds before it reaches s_{\max} , where

$$v(T-k) = (1+v_0)e^{-(T-k)} - 1.$$

12d. By using the result to part (b) (i), show that $v(T-k) = e^k - 1$. [2 marks]

Similarly, let v(T+k) represent the particle's velocity k seconds after it reaches $s_{\max}.$

A particle P starts from point O and moves along a straight line. The graph of its velocity, $v \text{ ms}^{-1}$ after t seconds, for $0 \le t \le 6$, is shown in the following diagram.

The graph of v has t-intercepts when t = 0, 2 and 4.

The function s(t) represents the displacement of P from O after t seconds.

It is known that P travels a distance of 15 metres in the first 2 seconds. It is also known that s(2) = s(5) and $\int_2^4 v \, dt = 9$.

13a. Find the value of s(4) - s(2).

[2 marks]

14. A particle moves in a straight line such that at time t seconds $(t \ge 0)$, its [5 marks] velocity v, in ms⁻¹, is given by $v = 10te^{-2t}$. Find the exact distance travelled by the particle in the first half-second.

. .

A particle moves along a straight line. Its displacement, s metres, at time t seconds is given by $s = t + \cos 2t, t \ge 0$. The first two times when the particle is at rest are denoted by t_1 and t_2 , where $t_1 < t_2$.

15a. Find t_1 and t_2 .

[5 marks]

15b. Find the displacement of the particle when $t=t_1$

[2 marks]

International Baccalaureate

Baccalauréat International

Bachillerato Internacional

© International Baccalaureate Organization 2023 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM