
Kinematics [147 marks]

A particle moves in a straight line such that its velocity, $v { m ms}^{-1}$, at this given by $v=4t^2-6t+9-2\sin(4t), 0\leq t\leq 1.$ The particle's acceleration is zero at $t=T$.	ime t seconds
1a. Find the value of T .	[2 marks]
1b. Let s_1 be the distance travelled by the particle from $t = 0$ to $t = T$ a let s_2 be the distance travelled by the particle from $t = T$ to $t = 1$. Show that $s_2 > s_1$.	nd <i>[3 marks]</i>
A particle moves along a straight line so that its velocity, $v~{ m ms^{-1}}$, aft is given by $v(t){ m =}~{ m e}^{\sin t}+4\sin t$ for $0\leq t\leq 6.$	ter t seconds
2a. Find the value of t when the particle is at rest.	[2 marks]
2b. Find the acceleration of the particle when it changes direction.	[3 marks]
2c. Find the total distance travelled by the particle.	[2 marks]
2c. Find the total distance travelled by the particle. A particle moves in a straight line such that its velocity, $v \mathrm{ms^{-1}}$, at t is given by $v = \frac{(t^2+1)\cos t}{4}, \ 0 \le t \le 3$.	[2 marks]
A particle moves in a straight line such that its velocity, $v~{ m ms^{-1}}$, at t	[2 marks]
A particle moves in a straight line such that its velocity, $v~{ m ms^{-1}}$, at t is given by $v=rac{(t^2+1)\cos t}{4},~0\leq t\leq 3.$	<i>[2 marks]</i> ime <i>t</i> seconds

A particle moves in a straight line. The velocity, $v \, {
m ms}^{-1}$, of the particle at time t seconds is given by $v(t) = t \, \sin t - 3$, for $0 \le t \le 10$.

The following diagram shows the graph of v.

4a. Find the smallest value of t for which the particle is at rest.	[2 marks]
4b. Find the total distance travelled by the particle.	[2 marks]
4c. Find the acceleration of the particle when $t=7.$	[2 marks]
A particle P moves in a straight line such that after time t seconds, its in $m s^{-1}$, is given by $v = e^{-3t} \sin 6 t$, where $0 < t < rac{\pi}{2}$.	velocity, v
5a. Find the times when P comes to instantaneous rest.	[2 marks]
At time t , P has displacement $s(t)$; at time $t=0$, $s(0)=0.$	
5b. Find an expression for s in terms of t .	[7 marks]
5c. Find the maximum displacement of P , in metres, from its initial position	n. <i>[2 marks]</i>
5d. Find the total distance travelled by P in the first 1.5 seconds of its motion.	[2 marks]

At successive times when the acceleration of P is 0 ms^{-2} , the velocities of P form a geometric sequence. The acceleration of P is zero at times t_1, t_2, t_3 where $t_1 < t_2 < t_3$ and the respective velocities are v_1, v_2, v_3 .

[2 marks]

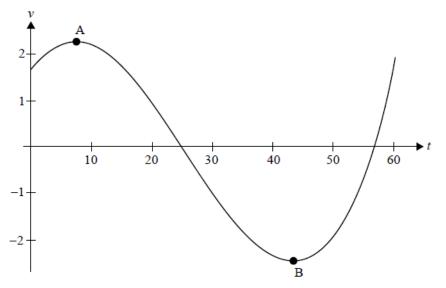
5e. Show that, at these times, an 6t=2.

5f. Hence show that $\frac{v_2}{v_1} = \frac{v_3}{v_2} = -e^{-\frac{\pi}{2}}$. [5 marks]

A rocket is travelling in a straight line, with an initial velocity of 140 m s^{-1} . It accelerates to a new velocity of 500 m s^{-1} in two stages.

During the first stage its acceleration, $a \text{ m s}^{-2}$, after t seconds is given by $a(t) = 240 \sin(2t)$, where $0 \le t \le k$.

6a. Find an expression for the velocity, $v \,\mathrm{m}\,\mathrm{s}^{-1}$, of the rocket during the first [4 marks] stage.


The first stage continues for k seconds until the velocity of the rocket reaches $375\,$ m s^{-1}.

- 6b. Find the distance that the rocket travels during the first stage. [4 marks]
- 6c. During the second stage, the rocket accelerates at a constant rate. The *[6 marks]* distance which the rocket travels during the second stage is the same as the distance it travels during the first stage.

Find the total time taken for the two stages.

A body moves in a straight line such that its velocity, $v \,\mathrm{ms}^{-1}$, after t seconds is given by $v = 2\sin\left(\frac{t}{10} + \frac{\pi}{5}\right)\csc\left(\frac{t}{30} + \frac{\pi}{4}\right)$ for $0 \leqslant t \leqslant 60$.

The following diagram shows the graph of v against t. Point A is a local maximum and point B is a local minimum.

7a. Determine the coordinates of point A and the coordinates of point B. *[4 marks]*

7b. Hence, write down the maximum speed of the body. [1 mark]

The body first comes to rest at time $t = t_1$.	Find
--	------

7c. the value of t_1 .	[2 marks]
--------------------------	-----------

[2 marks]

[2 marks]

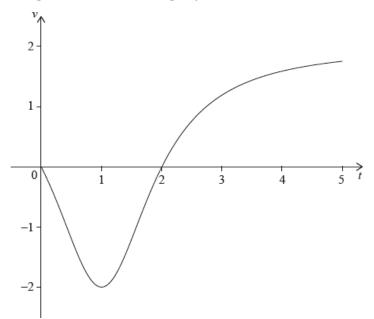
[3 marks]

7d. the distance travelled between t=0 and $t=t_1.$

7e. the acceleration when $t = t_1$.

7f. Find the distance travelled in the first 30 seconds.

8. A particle moves along a horizontal line such that at time t seconds, $t \ge [6 marks]$ 0, its acceleration a is given by a = 2t - 1. When t = 6, its displacement s from a fixed origin O is 18.25 m. When t = 15, its displacement from O is 922.75 m. Find an expression for s in terms of t. A particle moves along a straight line so that its velocity, $v \text{ m s}^{-1}$, after t seconds is given by $v(t) = 1.4^t - 2.7$, for $0 \le t \le 5$.


9a. Find when the particle is at rest.[2 marks]

9b. Find the acceleration of the particle when t = 2. [2 marks]

9c. Find the total distance travelled by the particle.

10. Note: In this question, distance is in metres and time is in [6 marks] seconds.

A particle moves along a horizontal line starting at a fixed point A. The velocity v of the particle, at time t, is given by $v(t) = \frac{2t^2 - 4t}{t^2 - 2t + 2}$, for $0 \le t \le 5$. The following diagram shows the graph of v

There are *t*-intercepts at (0, 0) and (2, 0).

Find the maximum distance of the particle from A during the time $0\leqslant t\leqslant 5$ and justify your answer.

A particle P moves along the x-axis. The velocity of P is $v \ge s^{-1}$ at time t seconds, where $v(t) = 4 + 4t - 3t^2$ for $0 \le t \le 3$. When t = 0, P is at the origin O.

11a. Find the value of t when P reaches its maximum velocity.

[2 marks]

[3 marks]

11b. Show that the distance of P from ${ m O}$ at this time is $rac{88}{27}$ metres.	[5 marks]
11c. Sketch a graph of v against t , clearly showing any points of intersection with the axes.	[4 marks]
11d. Find the total distance travelled by P .	[5 marks]

The acceleration, $a \text{ ms}^{-2}$, of a particle moving in a horizontal line at time t seconds, $t \ge 0$, is given by a = -(1+v) where $v \text{ ms}^{-1}$ is the particle's velocity and v > -1.

At t = 0, the particle is at a fixed origin O and has initial velocity $v_0 \text{ ms}^{-1}$.

12a. By solving an appropriate differential equation, show that the particle's [6 marks] velocity at time t is given by $v(t) = (1 + v_0)e^{-t} - 1$.

Initially at O, the particle moves in the positive direction until it reaches its maximum displacement from O. The particle then returns to O.

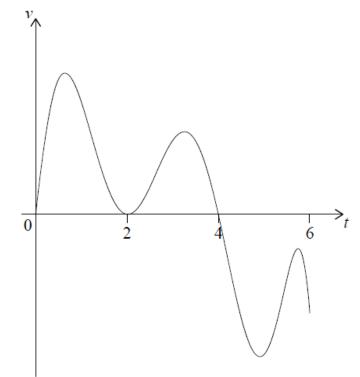
Let s metres represent the particle's displacement from O and s_{max} its maximum displacement from O.

- 12b. Show that the time T taken for the particle to reach s_{max} satisfies the [2 marks] equation $e^T = 1 + v_0$.
- 12c. By solving an appropriate differential equation and using the result from [5 marks] part (b) (i), find an expression for s_{max} in terms of v_0 .

Let v(T-k) represent the particle's velocity k seconds before it reaches s_{\max} , where

$$v(T-k) = (1+v_0)e^{-(T-k)} - 1.$$

12d. By using the result to part (b) (i), show that $v(T-k) = e^k - 1$. [2 marks]


Similarly, let v(T+k) represent the particle's velocity k seconds after it reaches s_{\max} .

12e. Deduce a similar expression for v(T+k) in terms of k.

[2 marks]

12f. Hence, show that $v(T-k)+v(T+k) \ge 0$.

A particle P starts from point O and moves along a straight line. The graph of its velocity, $v \text{ ms}^{-1}$ after t seconds, for $0 \le t \le 6$, is shown in the following diagram.

The graph of v has t-intercepts when t = 0, 2 and 4.

The function s(t) represents the displacement of P from O after t seconds.

It is known that P travels a distance of 15 metres in the first 2 seconds. It is also known that s(2) = s(5) and $\int_2^4 v \, dt = 9$.

13a. Find the value of s(4) - s(2).

[2 marks]

13b. Find the total distance travelled in the first 5 seconds. [5 marks]

14. A particle moves in a straight line such that at time t seconds $(t \ge 0)$, its [5 marks] velocity v, in ms⁻¹, is given by $v = 10te^{-2t}$. Find the exact distance travelled by the particle in the first half-second.

A particle moves along a straight line. Its displacement, s metres, at time tseconds is given by $s = t + \cos 2t$, $t \ge 0$. The first two times when the particle is at rest are denoted by t_1 and t_2 , where $t_1 < t_2$. 15a. Find t_1 and t_2 . 15b. Find the displacement of the particle when $t = t_1$ [2 marks]

International Baccalaureate Baccalauréat International

Bachillerato Internacional

Printed for 2 SPOLECZNE LICEUM