Related rates [20 marks]

A water trough which is 10 metres long has a uniform cross-section in the shape of a semicircle with radius 0.5 metres. It is partly filled with water as shown in the following diagram of the cross-section. The centre of the circle is O and the angle KOL is θ radians.

diagram not to scale

1a. Find an expression for the volume of water $V(m^3)$ in the trough in [3 marks] terms of θ .

```
Markscheme

* This question is from an exam for a previous syllabus, and may contain

minor differences in marking or structure.

area of segment = \frac{1}{2} \times 0.5^2 \times (\theta - \sin \theta) M1A1

V = \text{area of segment} \times 10

V = \frac{5}{4}(\theta - \sin \theta) A1

[3 marks]
```

The volume of water is increasing at a constant rate of $0.0008 m^3 s^{-1}$.

^{1b.} Calculate
$$\frac{d\theta}{dt}$$
 when $\theta = \frac{\pi}{3}$.

[4 marks]

Markscheme

```
METHOD 1

\frac{dV}{dt} = \frac{5}{4} (1 - \cos \theta) \frac{d\theta}{dt} \quad M1A1
0.0008 = \frac{5}{4} (1 - \cos \frac{\pi}{3}) \frac{d\theta}{dt} \quad (M1)
\frac{d\theta}{dt} = 0.00128 (rad s^{-1}) \quad A1
METHOD 2

\frac{d\theta}{dt} = \frac{d\theta}{dV} \times \frac{dV}{dt} \quad (M1)
\frac{dV}{d\theta} = \frac{5}{4} (1 - \cos \theta) \quad A1
\frac{d\theta}{dt} = \frac{4 \times 0.0008}{5 (1 - \cos \frac{\pi}{3})} \quad (M1)
\frac{d\theta}{dt} = 0.00128 (\frac{4}{3125}) (rad s^{-1}) \quad A1
[4 marks]
```

2. A camera at point C is 3 m from the edge of a straight section of road as [6 marks] shown in the following diagram. The camera detects a car travelling along the road at t = 0. It then rotates, always pointing at the car, until the car passes O, the point on the edge of the road closest to the camera.

A car travels along the road at a speed of 24 ms⁻¹. Let the position of the car be X and let $O\hat{C}X = \theta$.

Find $\frac{d\theta}{dt}$, the rate of rotation of the camera, in radians per second, at the instant the car passes the point O .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

let OX = x

METHOD 1

 $rac{\mathrm{d}x}{\mathrm{d}t} = 24$ (or -24) (A1) $rac{\mathrm{d} heta}{\mathrm{d}t} = rac{\mathrm{d}x}{\mathrm{d}t} imes rac{\mathrm{d} heta}{\mathrm{d}x}$ (M1) $3 \tan heta = x$ A1

EITHER

OR

$$egin{aligned} & heta = rctan\left(rac{x}{3}
ight) \ &rac{\mathrm{d} heta}{\mathrm{d}x} = rac{1}{3} imes rac{1}{1+rac{x^2}{9}} & extsf{A1} \ &rac{\mathrm{d} heta}{\mathrm{d}t} = 24 imes rac{1}{3\left(1+rac{x^2}{9}
ight)} \end{aligned}$$

attempt to substitute for x=0 into their differential equation \qquad $\pmb{M1}$

THEN

 $\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{24}{3} = 8 \text{ (rad s}^{-1}) \qquad \textbf{A1}$ **Note:** Accept -8 rad s^{-1} .

METHOD 2

 $rac{\mathrm{d}x}{\mathrm{d}t}=24$ (or -24) (A1) 3 an heta=x A1

attempt to differentiate implicitly with respect to t **M1**

attempt to substitute for $\theta = 0$ into their differential equation **M1**

$$\frac{d\theta}{dt} = \frac{24}{3} = 8$$
 (rad s⁻¹) **A1**

Note: Accept -8 rad s^{-1} .

Note: Can be done by consideration of CX, use of Pythagoras.

METHOD 3

let the position of the car be at time t be d-24t from O (A1) $\tan \theta = \frac{d-24t}{3} \left(= \frac{d}{3} - 8t \right)$ **M1 Note:** For $\tan \theta = \frac{24t}{3}$ award **AOM1** and follow through. **EITHER** attempt to differentiate implicitly with respect to tM1 $\sec^2 heta rac{\mathrm{d} heta}{\mathrm{d}t} = -8$ A1 attempt to substitute for heta=0 into their differential equation **M1** OR $\theta = \arctan\left(\frac{d}{3} - 8t\right)$ M1 $rac{\mathrm{d} heta}{\mathrm{d}t} = rac{8}{1+\left(rac{d}{3}-8t
ight)^2}$ A1 at O, $t=rac{d}{24}$ **A1** THEN $rac{\mathrm{d} heta}{\mathrm{d}t} = -8$ A1 [6 marks]

Two boats \boldsymbol{A} and \boldsymbol{B} travel due north.

Initially, boat B is positioned $50\ \text{metres}$ due east of boat A.

The distances travelled by boat A and boat B, after t seconds, are x metres and y metres respectively. The angle θ is the radian measure of the bearing of boat B from boat A. This information is shown on the following diagram.

3a. Show that $y = x + 50 \cot \theta$.

Markscheme

 $an heta = rac{50}{y-x}$ OR $\cot heta = rac{y-x}{50}$ A1

 $y = x + 50 \cot \theta \, \textbf{AG}$

Note: y - x may be identified as a length on a diagram, and not written explicitly.

```
[1 mark]
```

3b. At time T, the following conditions are true.

[6 marks]

Boat B has travelled 10 metres further than boat A. Boat B is travelling at double the speed of boat A. The rate of change of the angle θ is -0.1 radians per second.

Find the speed of boat A at time T.

[1 mark]

Markscheme
attempt to differentiate with respect to *t* (*M1*)

$$\frac{dy}{dt} = \frac{dx}{dt} - 50(\csc \theta)^2 \frac{d\theta}{dt} AI$$
attempt to set speed of B equal to double the speed of A (*M1*)

$$2\frac{dx}{dt} = \frac{dx}{dt} - 50(\csc \theta)^2 \frac{d\theta}{dt}$$

$$\frac{dx}{dt} = -50(\csc \theta)^2 \frac{d\theta}{dt} AI$$

$$\theta = \arctan 5(= 1.373... = 78.69...^{\circ}) \text{ OR}$$

$$\csc^2 \theta = 1 + \cot^2 \theta = 1 + (\frac{1}{5})^2 = \frac{26}{25} (AI)$$
Note: This AI can be awarded independently of previous marks.

$$\frac{dx}{dt} = -50(\frac{26}{25}) \times -0.1$$
So the speed of boat A is 5.2 (ms⁻¹) AI
Note: Accept 5.20 from the use of inexact values.
[6 marks]

© International Baccalaureate Organization 2023

International Baccalaureate ® - Baccalauréat International ® - Bachillerato Internacional ®

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

Printed for 2 SPOLECZNE LICEUM