Trig 29.03 Paper I [198 marks]

0	$\sec^n x \tan x \mathrm{d} x$ in terms of n , where n is a non-zero real number.

a. Show that $2z$	$x-3-\tfrac{6}{x-1} =$	$\frac{2x^2-5x-3}{x-1}, \ x \in \mathbb{R}, \ x \neq 1.$	[2 marks

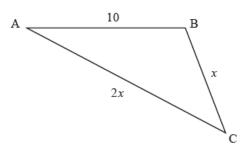
b. Hence $0 \leq heta$	e or otherwise $0 \leq \pi, \; heta eq rac{\pi}{4}.$, solve the e	quation $2~ m s$	$\sin 2 heta - 3$ -	$-\frac{6}{\sin 2\theta - 1} =$	0 for	[5 marks]
Show	that $\sin2x+$	$\cos 2x - 1 =$	$= 2 \sin x$ (c	os $x - \sin x$	x).		[2 marks]
			·				
• • • •							

lence, solve the equation $2\cos^2x+5\sin x=4, 0\leq x\leq 2\pi$.	[5 m

4a. Show that the equation $2\cos^2x+5\sin x=4$ may be written in the form [1 mark] $2\sin^2x-5\sin x+2=0$.

5. The following diagram shows triangle ABC, with AB=10, BC=x and [7 marks] AC=2x.

diagram not to scale

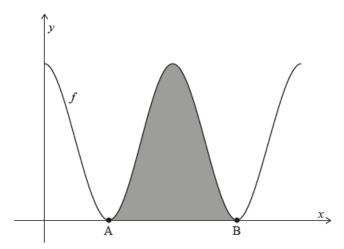


Given that $\cos \widehat{C} = \frac{3}{4}$, find the area of the triangle.

Give your answer in the form $rac{p\sqrt{q}}{2}$ where $p,q\in\mathbb{Z}^+.$

	<u> </u>		

Consider the function f defined by $f(x)=6+6\cos x$, for $0\leq x\leq 4\pi$. The following diagram shows the graph of y=f(x).



The graph of f touches the x-axis at points A and B, as shown. The shaded region is enclosed by the graph of y=f(x) and the x-axis, between the points A and B.

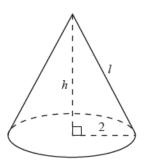
6a. Find the x -coordinates of A and B .	[3 marks]

now that the area of the shaded region is 12π .	[5 mar

The right cone in the following diagram has a total surface area of 12π , equal to the shaded area in the previous diagram.

The cone has a base radius of 2, height h, and slant height l.

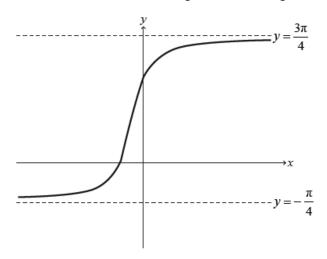
diagram not to scale



value of $l.$	[3 marks]

	ume of the cone.	[4 m

The following diagram shows the graph of $y=\arctan(2x+1)+\frac{\pi}{4}$ for $x\in\mathbb{R}$, with asymptotes at $y=-\frac{\pi}{4}$ and $y=\frac{3\pi}{4}$.



8a. Describe a sequence of transformations that transforms the graph of $y=\arctan x$ to the graph of $y=\arctan(2x+1)+\frac{\pi}{4}$ for $x\in\mathbb{R}$.

erify	that $\arctan{(2x+1)}=\arctan{\left(rac{x}{x+1} ight)}+rac{\pi}{4}$ for $x\in\mathbb{R}, x>0$.
rify	that $rctan\left(2x+1 ight)=rctan\left(rac{x}{x+1} ight)+rac{\pi}{4}$ for $x\in\mathbb{R}, x>0.$
rify	that $\arctan{(2x+1)}=\arctan{\left(rac{x}{x+1} ight)}+rac{\pi}{4}$ for $x\in\mathbb{R}, x>0$.
rify	that $\arctan{(2x+1)}=\arctan{\left(rac{x}{x+1} ight)}+rac{\pi}{4}$ for $x\in\mathbb{R}, x>0$.
rify	that $\arctan{(2x+1)}=\arctan{\left(rac{x}{x+1} ight)}+rac{\pi}{4}$ for $x\in\mathbb{R}, x>0$.
erify	that $\arctan{(2x+1)}=\arctan{\left(rac{x}{x+1} ight)}+rac{\pi}{4}$ for $x\in\mathbb{R}, x>0$.
	that $\arctan{(2x+1)}=\arctan{\left(rac{x}{x+1} ight)}+rac{\pi}{4}$ for $x\in\mathbb{R}, x>0$.

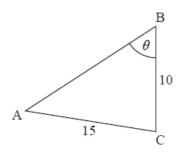
	$ ext{rctan}\Big(rac{1}{2r^2}\Big) = ext{arctan}\Big(rac{n}{n+1}\Big) ext{ for } n \in \mathbb{Z}^+.$
٠.	

8d. Using mathematical induction and the result from part (b), prove that [9 marks]

Solve the equation $2\cos^2x+5\sin x=4, 0\leq x\leq 2\pi$.	[7 marks

The following diagram shows a triangle ABC.

diagram not to scale



$$AC=15~cm, BC=10~cm$$
, and $A\widehat{B}C=\theta$. Let $\sin C\widehat{A}B=rac{\sqrt{3}}{3}$.

10a. Given	that \widehat{ABC}	is acute,	find sin	θ .
------------	----------------------	-----------	----------	------------

[3 marks]

10b. Find cos	$(2 imes \mathrm{C\widehat{A}B})$
Tilla cos	$(2 \times \text{OHD})$

[3 marks]

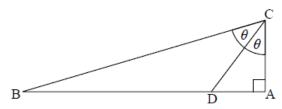
11. Let $f(x)=4\cos\left(\frac{x}{2}\right)+1$, for $0\leqslant x\leqslant 6\pi$. Find the values of x for which $\emph{[8 marks]}$ $f(x)>2\sqrt{2}+1$.

Sh	now that $\cos\left(2A+B ight)=-rac{2\sqrt{2}}{27}-rac{4\sqrt{5}}{27}.$

......

The following diagram shows a right triangle ABC. Point D lies on AB such that CD bisects $A\hat{C}B$.

diagram not to scale



 $\hat{ACD} = \theta$ and AC = 14 cm

13a	· Given that $\sin heta = rac{3}{5}$, find the value of $\cos heta$.	[3 marks]
13b	. Find the value of $\cos 2 heta$.	[3 marks]

ence or otherwise,	find BC.		[2 m

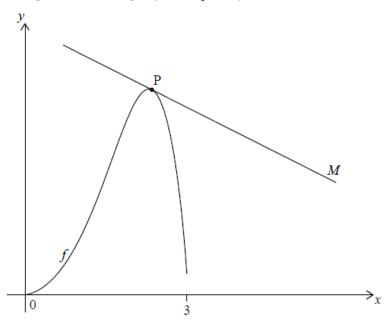
Let θ be an **obtuse** angle such that $\sin\theta=\frac{3}{5}$.

a. Find the value of $ an heta$.	[4 mark.

<u>'</u>	passes through the original on of L .		

Let
$$f(x) = e^x \sin x - \frac{3x}{4}$$
.

14c. The following diagram shows the graph of f for $0 \le x \le 3$. Line M is a $\ [4 \ marks]$ tangent to the graph of f at point P.



Given that M is parallel to L, find the x-coordinate of ${\bf P}.$

The lengths of two of the sides in a triangle are 4 cm and 5 cm. Let θ be the angle between the two given sides. The triangle has an area of $\frac{5\sqrt{15}}{2}$ cm².

5a. _s	Sh	0	W	tł	าล	at	S	iı	1	θ	1 =	 =	1	4	15	<u>,</u> 																									[1	 n	1ā	7	k.

16a.	Show that $\left(\sin x + \cos x\right)^2 = 1 + \sin 2x$.	[2 marks]

15b. Find the two possible values for the length of the third side.

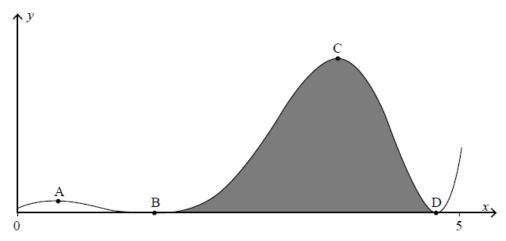
[6 marks]

how that $\sec 2x + \tan 2x$ =	$= \frac{\cos x + \sin x}{\cos x - \sin x}.$	[4 ma

$\mathrm{e}^x \cos 2x \mathrm{d}x$	n by parts to show that $=rac{2\mathrm{e}^x}{5}\mathrm{sin}2x+rac{\mathrm{e}^x}{5}\mathrm{cos}2x+c$,	$c\in\mathbb{R}.$

17b. Hence, show that $\int \mathrm{e}^x \cos^2x \mathrm{d}x = rac{\mathrm{e}^x}{5} \sin 2x + rac{\mathrm{e}^x}{10} \cos 2x + rac{\mathrm{e}^x}{2} + c$, $c \in \mathbb{R}$. [3 marks]

The function f is defined by $f(x) = \mathrm{e}^x \cos^2 x$, where $0 \le x \le 5$. The curve y = f(x) is shown on the following graph which has local maximum points at A and C and touches the x-axis at B and D.



17c. Find the x-coordinates of A and of C , giving your answers in the form $a + \arctan b$, where $a, b \in \mathbb{R}$.

•	

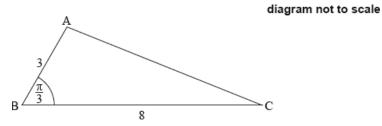
18b. Show that Re S = Im S.

								$\overline{a}+\sqrt{b}$	[3 ma
By wr	riting $\frac{\pi}{12}$ are a , b and	as $\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$), find th	ne value be dete	e of cos -	$\frac{\pi}{12}$ in the	form $\frac{}{}$	$\overline{a} + \sqrt{b}$	[3 mai
By wr	riting $rac{\pi}{12}$ are a , b and	as $\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$), find th	ne value be dete	e of cos -	$\frac{\pi}{12}$ in the	form $\frac{}{}$	$\frac{\overline{a} + \sqrt{b}}{c}$	[3 mai
By wi wher	riting $\frac{\pi}{12}$ are a , b and	s $\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$), find th	ne value be dete	e of cos -	$\frac{\pi}{2}$ in the	form $\sqrt{}$	$\frac{\overline{a} + \sqrt{b}}{c}$	[3 ma.
By wr	riting $\frac{\pi}{12}$ are a , b and	is $\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$), find the egers to	ne value be dete	e of cos -	$rac{\pi}{12}$ in the	form	$\frac{\overline{a}+\sqrt{b}}{c}$	[3 mai
By wr wher	riting $\frac{\pi}{12}$ are a , b and	is $\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$), find the egers to	ne value be dete	e of cos -	$\frac{\pi}{12}$ in the	form	$\overline{a} + \sqrt{b}$ c	[3 ma
By wr wher	riting $\frac{\pi}{12}$ are a , b and	as $\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$), find the egers to	ne value be dete	e of cos -	$rac{\pi}{12}$ in the	form		[3 ma.
By wr wher	riting $\frac{\pi}{12}$ are a , b and	as $\left(\frac{\pi}{4}-\frac{\pi}{6}\right)$), find the egers to	ne value be dete	e of cos -	$\frac{\pi}{2}$ in the	form		

[4 marks]

-	[5 r
-	[5 r
-	[5 n
-	[5 n
-	[5 n
It $a=\sin b,\; 0< b<rac{\pi}{2}.$ and, in terms of b , the solutions of $\sin 2x=-a,\; 0\leqslant x\leqslant \pi.$	[5 n
-	[5 n
-	[5 n
-	[5 m

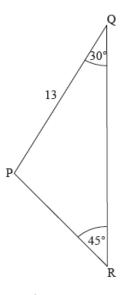
The following diagram shows triangle ABC, with AB=3cm , BC=8cm , and $A\hat{B}C=\frac{\pi}{3}.$



20a. Show that $\mathrm{AC}=7~\mathrm{cm}$.	[4 marks]

			formed by a	
$\frac{3}{8}$ Eind the exa	8 act perimeter	of this shape		
			•	

diagram not to scale



 $P\hat{Q}R=30^{\circ}\,,~Q\hat{R}P=45^{\circ}\,\text{and}~PQ=13\,\text{cm}\,.$

Find PR.

Solve the equation $\sec^2 x + 2 \tan x = 0, \; 0 \leqslant x \leqslant 2\pi.$	[5 marks

© International Baccalaureate Organization 2023 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

