- 9. Let f and g be two functions. Given that $f \circ g(x) = \frac{x+2}{3}$ and g(x) = 2x + 5, find f(x-1). [6 marks]
- 15. A function is called *self-inverse* if $f(x) = f^{-1}(x)$ for all x in the domain.
 - (a) Show that $f(x) = \frac{1}{x}$, $x \ne 0$ is a self-inverse function.
 - (b) Find the value of the constant k so that $g(x) = \frac{3x-5}{x+k}$, $x \ne k$ is a self-inverse function. [8 marks]
- 5. If $h(x) = x^2 6x + 2$:
 - (a) Write h(x) in the form $(x-p)^2 + q$.
 - (b) Hence or otherwise find the range of h(x).
 - (c) By using the largest possible domain of the form x > k where, find the inverse function $h^{-1}(x)$. [7 marks]
- 6. The function f(x) is defined by $f(x) = \frac{3-x}{x+1}, x \neq -1$.
 - (a) Find the range of *f*.
 - (b) Sketch the graph of y = f(x).
 - (c) Find the inverse function of f in the form $f^{-1}(x) = \frac{ax + b}{cx + d}$. State its domain and range. [11 marks]
- 8. The functions f(x) and g(x) are given by $f(x) = \sqrt{x-2}$ and $g(x) = x^2 + x$. The function $f \circ g(x)$ is defined for $x \in \mathbb{R}$ except for the interval] a, b[.
 - (a) Calculate the value of *a* and of *b*.
 - (b) Find the range of $f \circ g$.

[7 marks]

- 3. The functions f and g are defined over the domain of all real numbers, $g(x) = e^x$.
 - (a) Write $f(x) = x^2 + 4x + 9$ $x \in \mathbb{R}$ in the form $f(x) = (x + p)^2 + q$.
 - (b) Hence sketch the graph of $y = x^2 + 4x + 9$, labelling carefully all axes intercepts and the coordinates of the turning point.
 - (c) State the range of f(x) and g(x).
 - d Hence or otherwise find the range of $h(x) = e^{2x} + 4e^x + 9$. [10 marks]
- 6. A bowl of soup is served at a temperature of 55 °C in a room with a constant air temperature of 20 °C. Every 5 minutes, the temperature difference between the soup and the room air decreases by 30%. Assuming the room air temperature is constant, at what temperature will the soup be seven minutes after serving?

 [7 marks]
- 8. A cup of tea is poured at 98 °C. After two minutes it has reached 94 °C. The difference between the temperature of the tea and the room temperature (22 °C) falls exponentially. Find the time it takes for the tea to cool to 78 °C.

 [5 marks]
- Given $\log_a b^2 = c$ and $\log_b a = c 1$ for some value c, where 0 < a < b, express a in terms of b. [6 marks]
- Solve the equation $9 \log_5 x = 25 \log_x 5$, expressing your answers in the form $5^{\frac{p}{q}}$, where $p, q \in \mathbb{Z}$. [6 marks]

(© IB Organization 2006)

8. Find the exact solution to the equation $\ln x = 4 \log_x e$. [5 marks]

7. The speed (V metres per second) of a parachutist t seconds after jumping from an aeroplane is modelled by the expression:

$$V = 40(1 - 3^{-0.1t})$$

- (a) Find his initial speed.
- (b) What speed does the model predict that he will eventually reach?

[6 marks]

5. If $a = \ln 2$ and $b = \ln 5$, find in terms of a and b:

[6 marks]

(a) ln 50

- (b) ln 0.16
- 6. Solve $\log_2 x = \log_x 2$.

[5 marks]

- Prove that if $a^x = b^y = (ab)^{xy}$ where a, b > 1 then x + y = 1or x = y = 0. [5 marks]
- 8. Evaluate $\log \frac{1}{2} + \log \frac{2}{3} + \log \frac{3}{4} + \log \frac{4}{5} + \log \frac{8}{9} + \log \frac{9}{10}$. [4 marks]
- Given that $\log_a b = \log_b a$, and that $a, b \neq 1$ and $a \neq b$, find *b* in terms of *a*. [5 marks]
- If $a = \log x$, $b = \log y$ and $c = \log z$ (all logs base 10) find in terms of a, b, c and integers:
- (a) $\log \frac{x^2 \sqrt{y}}{z}$ (b) $\log \sqrt{0.1x}$ (c) $\log_{100} \left(\frac{y}{z}\right)$ [6 marks]

3. Solve the simultaneous equations:

$$ln x + ln y^2 = 8$$

$$\ln x^2 + \ln y = 6$$

[6 marks]

If $y = \ln x - \ln(x+2) + \ln(4-x^2)$, express x in terms of y.

[6 marks]

EXAM-STYLE QUESTION

3 Let $p = \log_a x$ and $q = \log_a y$. Express $\log_x a$ in terms of pand $\log_{\nu} a$ in terms of q. Hence, show that:

$$\mathbf{a} \quad \log_{xy} a = \frac{1}{p+q}$$

$$\mathbf{b} \quad \log_{\frac{x}{y}} a = \frac{1}{p - q}$$

EXAM-STULE QUESTIONS

5 Solve the equation
$$5^{x+1} + \frac{4}{5^x} - 21 = 0$$

Solve the equation $\log_3 x + \log_x 9 - 3 = 0$

Solve the equation $3 \times 9^x - 2 \times 4^x = 5 \times 6^x$ giving your answer to three significant figures.

8 Solve these simultaneous equations.

$$6\log_2 x + 6\log_8 y = 7$$

$$4\log_4 x + 4\log_2 y = 9$$

9 Solve these simultaneous equations.

$$2\log_{x} y = 1$$

$$xy = 125$$

10 Solve these simultaneous equations.

$$y\log_2 8 = x$$

$$y\log_2 8 = x$$
 $2^x + 8^y = 64$

10 Find the value of x which satisfies the equation $e^x - e^{-x} = 4$ Hence, show that for this value of x

$$e^x + e^{-x} = 2\sqrt{5}$$