For questions 7 to 12, use the method demonstrated in Worked Example 10.2 to find the values of a and b which make the following functions continuous and differentiable at all points.

7 **a**
$$f(x) = \begin{cases} x^2 & x \le 1 \\ ax + b & x > 1 \end{cases}$$

8 **a**
$$f(x) = \begin{cases} x^2 + a & x \le 2 \\ bx + 1 & x > 2 \end{cases}$$

9 **a**
$$f(x) = \begin{cases} x^a & x \le 1 \\ bx - 1 & x > 1 \end{cases}$$

$$\mathbf{b} \quad \mathbf{f}(x) = \begin{cases} x^3 & x \le 1\\ ax + b & x > 1 \end{cases}$$

b
$$f(x) = \begin{cases} x^2 + a & x \le 3 \\ bx + 2 & x > 3 \end{cases}$$

$$\mathbf{b} \quad \mathbf{f}(x) = \begin{cases} x^a & x \le 1 \\ bx - 2 & x > 1 \end{cases}$$

10 **a**
$$f(x) = \begin{cases} e^x & x \le 0 \\ ax + b & x > 0 \end{cases}$$

7 **a**
$$f(x) = \begin{cases} x^2 & x \le 1 \\ ax + b & x > 1 \end{cases}$$
8 **a** $f(x) = \begin{cases} x^2 + a & x \le 2 \\ bx + 1 & x > 2 \end{cases}$
9 **a** $f(x) = \begin{cases} x^a & x \le 1 \\ bx - 1 & x > 1 \end{cases}$
10 **a** $f(x) = \begin{cases} x^3 & x \le 1 \\ ax + b & x > 1 \end{cases}$
11 **a** $f(x) = \begin{cases} e^{-x} & x \le 1 \\ ax + b & x > 1 \end{cases}$
12 **a** $f(x) = \begin{cases} x^2 & x \le 1 \\ ax + b & x > 1 \end{cases}$

12 **a**
$$f(x) = \begin{cases} x^2 & x \le 1\\ a \ln x + b & x > 1 \end{cases}$$

$$\mathbf{b} \quad \mathbf{f}(x) = \begin{cases} \mathbf{e}^x & x \le 2\\ ax + b & x > 2 \end{cases}$$

$$\mathbf{b} \quad \mathbf{f}(x) = \begin{cases} \mathbf{e}^{-x} & x \le 2\\ \frac{a}{x} + b & x > 2 \end{cases}$$

$$\mathbf{b} \quad \mathbf{f}(x) = \begin{cases} x^2 & x \le 1\\ a\sqrt{x} + b & x > 1 \end{cases}$$

- Use L'Hôpital's rule to find $\lim_{x\to 0} \frac{e^x-1}{x}$.
- Use L'Hôpital's rule twice to find $\lim_{x\to\infty} \frac{x^2}{a^x}$.
- Find $\lim_{x\to 0} \frac{1-\cos(x^2)}{x^4}$.
- Find the following limits.

a
$$\lim_{x\to 0} \frac{x-\cos x}{x+\cos x}$$
 b $\lim_{x\to 0} \frac{x-\sin x}{x+\sin x}$

b
$$\lim_{x\to 0} \frac{x-\sin x}{x+\sin x}$$

Find the following limits.

a
$$\lim_{x\to 0} \frac{\sin x}{x^2}$$

b
$$\lim_{x \to 2} \frac{\sin(x-2)}{x^2 - 4}$$

- Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{\cos^2(5x)}{\cos^2 x}$.
- Evaluate $\lim_{x \to 1} \frac{(\ln x)^2}{x^2 2x + 1}$.
- Evaluate $\lim_{x \to 1} \frac{(\ln x)^2}{x^3 + x^2 5x + 3}$

Show that the function

$$f(x) = \begin{cases} \frac{\sin 3x}{\sin x} & x \le 0\\ \frac{e^{3x} - 1}{x} & x > 0 \end{cases}$$

is continuous at x = 0.

- Find $\lim xe^x$.
- Find $\lim_{r\to 0} \left(\frac{1}{\sin r} \frac{1}{r}\right)$
- 21 Find $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{e^x 1} \right)$.
- 22 Use L'Hôpital's rule to prove that

$$\lim_{x \to \infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} = 1.$$

- One side of a rectangle lies on the x-axis and two corners lie on the curve $y = \sin x$, $0 \le x \le \pi$. Find the largest possible area of the rectangle.
- Find the closest distance from the point (1, 2) to the curve $y = x^3$.
- A piece of wire is bent to form an isosceles triangle. Prove that the largest possible area is formed when the triangle is equilateral.
- 15 Two corridors meet at a right angle. Find the longest ladder that would fit horizontally around the corner if
 - a both corridors are 1 m wide
 - **b** one corridor is 1 m wide and the other corridor is 8 m wide.

You may assume for your calculations that the ladder has negligible width.

- Find the tangent to the curve $\frac{x+y}{x-y} = 2y$ at the point (3, 1).
- 15 A curve has equation $\sin(x+y) = \sqrt{2}\cos(x-y)$.
 - a Show that the point $\left(\frac{13\pi}{24}, \frac{5\pi}{24}\right)$ lies on the curve.
 - **b** Find the gradient of the curve at this point, giving your answer in the form $a + b\sqrt{3}$.
- Find the equations of the two possible tangents to the curve $x^2 + 3xy + y^2 = 1$ when x = 0.
- a Find the y intercepts of the curve $y^3 y x = 0$.
 - **b** Find the gradients of the tangents at each of these points.
- a Find the x intercepts of the curve $e^y y = x^2$.
 - **b** Find the equations of the tangents at each of these points.
- 19 a Find the possible values of y with an x coordinate of 1 in the equation $x^2 5xy + y^2 = 1$.
 - **b** Find the equations of the tangents at each of these points.
- Find $\frac{dy}{dx}$ if $e^y x \sin y = \ln y$.
- Given that $x \sin x = y \sin y$, find an expression for $\frac{dy}{dx}$ in terms of x and y.
- If $x^2 + y^2 = 9$, find an expression for $\frac{d^2y}{dx^2}$ in terms of y.
- Find the coordinates of the stationary points on the curve $x^2 + 4xy + 2y^2 + 1 = 0$.
- Find the coordinates of the turning points on the curve $y^3 3xy^2 + x^3 = 8$.
- 25 a Sketch the curve $y^2 = x^3$.
 - **b** Show that the equation of the tangent to the curve at the point (4, 8) is y = 3x 4.
 - c Find the coordinates of the point where this tangent meets the curve again.
- An x by y rectangle is expanding with $\frac{dx}{dt} = 4 \text{ cm s}^{-1}$ and $\frac{dy}{dt} = -2 \text{ cm s}^{-1}$. When x = 3 cm and y = 4 cm, find
 - a the rate of increase of the rectangle's area
 - b the rate of increase of the length of the diagonal.
- An inverted cone is being filled with water at a constant rate of $5 \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$. The surface of the water is always horizontal as it is being filled. The largest diameter of the cone is $10 \,\mathrm{cm}$ and its height is $30 \,\mathrm{cm}$. If the volume of water in the cone is V at time t, and h is the height of the water above the vertex of the cone,
 - a show that $V = \frac{\pi h^3}{108}$
 - **b** find the rate that the height is increasing when h = 18 cm.
- A circular stain of radius rcm and area Acm² is increasing in size. At a certain time, the rate of increase of the radius is 1.8 cm s^{-1} and the rate of increase of the area is $86.5 \text{ cm}^2 \text{ s}^{-1}$. Find the radius of the stain at this point.
- A sportsman throws a ball. When it is 2 m above the sportsman and 4 m away horizontally it is moving with purely horizontally with a speed of 3 m s⁻¹. Find the rate at which the ball is moving away from the sportsman.
- The density of a reactive substance is given by its mass divided by its volume. When the density is 5 g cm³ the mass is decreasing at a rate of 2 g s⁻¹ and the volume is decreasing at a rate of 1 cm³ s⁻¹. Determine, with justification, whether the density is increasing or decreasing.
- A ladder of length 3 m is sliding down a vertical wall. The foot of the ladder is on horizontal ground. When the point of contact with the wall is 2 m above the horizontal that point is moving down at a rate of 0.1 m s⁻¹. At what speed is the foot of the ladder moving away from the wall, assuming that the ladder always stays in contact with both the wall and the ground?