1 hour

Mathematics: analysis and approaches Higher level Paper 3 Practice Set A

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the mathematics: analysis and approaches formula book is required for this paper.
- The maximum mark for this examination paper is [55 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1 [Maximum mark: 30]

This question is about investigating and proving properties of a sequence called the Fibonacci sequence. The Fibonacci sequence is defined by the initial conditions $F_1 = 1$, $F_2 = 1$

and the recursion relation $F_{n+2} = F_n + F_{n+1}$ for $n \ge 1$.

a	Write down F_3 , F_4 and F_5 .	[3]
b	Dominique suggests that 1 is the only Fibonacci number which is a perfect square.	
	Use a counterexample to disprove this statement.	[2]
c	Prove by induction that	
	$\sum_{i=1}^{i=n} (F_i)^2 = F_n F_{n+1}.$	[6]
d	Find the smallest value of k such that $F_k \ge k$. Prove that $F_n \ge n$ for $n \ge k$.	[7]
e	It is suggested that $F_n = \alpha^n$ might satisfy the recursion relation. Given that $\alpha \neq 0$, find the	
	two possible values of α .	[4]
f	Show that if α_1 and α_2 are the two possible values of α then $F_n = A\alpha_1^n + B\alpha_2^n$, where A and B are	
	constants, also satisfies the recursion relation.	[2]
g	Find an expression for F_n in terms of n .	[4]
h	Hence find the value of $\frac{F_{n+1}}{F_n}$ as <i>n</i> tends to infinity.	[2]

2 [Maximum mark: 25]

This question is about resonance in vibrating objects.

- **a** Write down the period of the function $\cos \pi t$.
- b i Sketch the function y = cos πt + cos 2πt for 0 ≤ t ≤ 3.
 ii Write down the period of the function cos πt + cos 2πt.
 c i Use technology to investigate the period of the given functions below. Write down the values of A, B and C.

f (<i>t</i>)	Period
$\cos \pi t + \cos 1.5\pi t$	A
$\cos \pi t + \cos 1.25\pi t$	В
$\cos \pi t + \cos 1.1\pi t$	С

- ii Hence conjecture an expression for the period, *T*, of $f(t) = \cos \pi t + \cos \left(\left(1 + \frac{1}{n}\right) \pi t \right)$ where *n* is an integer.
- **d** Prove that, for your conjectured value of *T*, f(t + T) = f(t).
- e i Use the compound angle formula to write down and simplify an expression for $\cos(A + B) + \cos(A B)$.
 - ii Hence find a factorized form for the expression $\cos P + \cos Q$.
- **f** By considering the factorized form of f(t), explain the shape of its graph.
- **g** A piano string oscillates when plucked. The displacement, x, from equilibrium as a function of time is modelled by:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 4x = 0.$$

Show that a function of the form x = f(t) = cos (ω t) solves this differential equation for a positive value of ω to be stated. [4]
h The piano string can be subjected to an external driving force from a tuning fork.

n The plano string can be subjected to an external driving force from a tuning The differential equation becomes:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 4x = \cos kt.$$

	Find a solution of the form $x = f(t) + g(k) \cos kt$ where $g(k)$ is a function to be found.	[3]
i	Resonance is a phenomenon in which the amplitude of the driven oscillation grows	
	without limit. For what positive value of k will resonance occur? Justify your answer.	[2]

[1]

[2]

[4]

[3]

[3]

[3]