Mathematics: analysis and approaches Higher level Paper 1 Practice Set B

2 hours

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all questions. Answers must be written within the answer boxes provided.
- Section B: answer all questions in an answer booklet.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the mathematics: analysis and approaches formula book is required for this paper.
- The maximum mark for this examination paper is [110 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer **all** questions. Answers must be written within the answer boxes provided. Working may be continued below the lines, if necessary.

1 [Maximum mark: 7] Find the value of a > 0 such that $\int_0^a \frac{4x}{x^2 + 3} dx = \ln 16$.

2 [Maximum mark: 6]

The box plot summarizes the times taken by a group of 40 children to complete an obstacle course.

Two of the 40 children are selected at random.

a Find the probability that both children completed the course in less than 9.5 minutes.

[3]

b Find the probability that one child completed the course in less than 9.5 minutes and the other in between 9.5 and 17.5 minutes.

[3]

6 [Maximum mark: 6]

The graph in the diagram has equation $y = A + Be^{-kx}$.

Find the values of A, B and k.

 		 	 • • • •
 	• • • • • • • • • • • • • • • • • • • •	 	
 		 	 • • • •

	d the first two non-zero terms in the Maclaurin series for $\frac{\cos x}{\sqrt{1-x^2}}$.	
		٠.

Do **not** write solutions on this page

Section B

Answer all questions in an answer booklet. Please start each question on a new page.

10 [Maximum mark: 18]

Let $f(x) = xe^{-kx}$ where $x \in \mathbb{R}$ and k > 0.

- a Show that $f'(x) = (1 kx)e^{-kx}$ and find f''(x) in the form $(a + bx)e^{-kx}$.
- **b** Find the x-coordinate of the stationary point of f(x) and show that it is a maximum. [5]
- c Find the coordinates of the point of inflection of f(x). [3]
- **d** The graph of y = f(x) is shown below. A is the maximum point and B is the point of inflection. Show that the shaded area equals $\frac{2e-3}{k^2e^2}$. [5]

11 [Maximum mark: 15]

The following system of equations does not have a unique solution.

$$\begin{cases} 6x + ky + 2z = a \\ 6x - y - z = 7 \\ 2x - 3y + z = 1 \end{cases}$$

a Find the value of k.

Each equation represents a plane.

- **b** Find
 - i the value of a for which the three planes intersect in a line
 - ii the equation of the line. [7]

[2]

c If the value of *a* is such that the three planes do not intersect in a line, describe their geometric configuration, justifying your answer.

12 [Maximum mark: 22]

Let $f(x) = x^2 - 2x - 3, x \in \mathbb{R}$.

- a Sketch the graph of y = |f(x)|. [3]
- **b** Hence or otherwise, solve the inequality $|f(x)| > -\frac{1}{2}x + 4$. [6]

Let $g(x) = \frac{2x-7}{f(x)}$.

- c State the largest possible domain of g. [1]
- **d** Find the coordinates of the turning points of g. [5]
- e Sketch the graph of y = g(x), labelling all axis intercepts and asymptotes. [5]
- f Hence find the range of g for the domain found in part c. [2]