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13 Differential Calculus I--: 
Fundamentals

Calculus is the branch of mathematics that was developed to analyze and 
model change – such as velocity and acceleration. We can also apply it to 
study change in the context of slope, area, volume and a wide range of 
other real-life phenomena. Although mathematical techniques that you 
have studied previously deal with many of these concepts, the ability to 
model change was restricted. For example, consider the curve in Figure 
13.1. This shows the motion of an object by indicating the distance (y 
metres) travelled after a certain amount of time (t seconds). Pre-calculus 
mathematics will only allow us to compute the average velocity between 
two different times (Figure 13.2). With calculus – specifically, techniques of 
differential calculus – we will be able to find the velocity of the object at a 
particular instant, known as its instantaneous velocity (Figure 13.3). The 
starting point for our study of calculus is the idea of a limit.

Introduction

Assessment statements
6.1	 Informal	ideas	of	limit,	continuity	and	convergence.

Definition	of	derivative	from	first	principles:	f9(x)	5			lim				
h	→	0

				
f (x	1	h)	2	f (x)

		_____________	
h

  		.

Derivative	interpreted	as	gradient	function	and	as	rate	of	change.	
Find	equations	of	tangents	and	normals.	
Identifying	increasing	and	decreasing	functions.	
The	second	derivative.

6.2	 Derivative	of	x n.
6.3	 Local	maximum	and	minimum	points.

Points	of	inflexion	with	zero	and	non-zero	gradients.	
Graphical	behaviour	of	functions	including	the	relationship	between	the	
graphs	of	f,	f9	and	f ‘‘.

6.6	 Kinematic	problems	involving	displacement,	s,	velocity,	v,	and	acceleration,	a.
(See	also	Chapter	15.)
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A bicycle ride over a hill: The graph 
above left shows distance (km) 
versus time (hrs) for a 50-kilometre 
bicycle ride that included going up 
and then down a steep hill. There 
are four time intervals labelled A, 
B, C and D. During which interval 
is the bicyclist’s speed the least? 
the greatest? During which two 
intervals is the bicyclist’s speed 
about the same? How does the 
shape of the distance-time graph 
give information about the speed 
of the bicyclist during a certain 
interval? or at a particular moment 
(instant) during the ride?
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 13.1 Limits of functions

A limit is one of the ideas that distinguish calculus from 
algebra, geometry and trigonometry. The notion of a 
limit is a fundamental concept of calculus. Limits are 
not new to us. We often use the idea of a ‘limit’ in many 
non-mathematical situations. Mathematically speaking, 
we have encountered limits on at least two occasions 
previously in this book – finding the sum of an infinite 
geometric series (Section 4.4) and computing the 
irrational number e (Section 5.3). 

Recall from Section 4.4 that we established that if the sequence of partial 
sums for an infinite series converges to a finite number L we say that the 
infinite series has a ‘sum’ of L. Further on in that section, we used limits to 

algebraically confirm that the infinite series 2 1 1 1   1 __ 
2

   1   1 __ 4   1   1 __ 
8

   1 … has a 

sum of 4. As part of the algebra for this, we reasoned that as the value of n 
increases in the positive direction without bound (i.e. n → 1`) the 

expression  (   1 _ 2   ) 
n

 converges to zero – in other words, the limit of  (   1 _ 2   ) 
n

 as 

n goes to positive infinity is zero. We express this result more efficiently 

using limit notation, as we did in Chapter 4, by writing   lim    
n  →  ̀

( 1 _ 
2

   ) 
n

 5 0. 

It is beyond the requirements of this course to establish a precise formal 
definition of a limit, but a closer look at justifying this limit and a couple of 
others can lead us to a useful informal definition.
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Figure 13.2 Computing average velocity 
from a distance–time graph.

Figure 13.1 Distance–time graph for 
an object’s motion.

Figure 13.3 Instantaneous 
velocity from a distance–time 
graph.
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Example 1 

Evaluate   lim    
n  →  ̀

   (   1 __ 
2

   )  
n

 by using your GDC to analyze the behaviour of the 

function f(x) 5   (   1 __ 
2

   )  
x

 for large positive values of x.

Solution

Plot1

Y1=(1/2)ˆX
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

WINDOW
Xmin=-1
Xmax=8
Xscl=1
Ymin=-.  1
Ymax=1 
Yscl=1
Xres=1

Y1

Y1=1.22070313E-4

7
8
9
10
11
12
13

X
.00781
.00391
.00195
9.8E-4
4.9E-4
2.4E-4
1.2E-4

Y1

X=0

X
1
.5
.25
.125
.0625
.03125
.01563

TABLE SETUP
TblStart=0

Indpnt: Auto Ask
Depend: Auto Ask

Tbl=1
0
1
2
3
4
5
6

The GDC screen images show the graph and table of values for y 5  (   1 __ 
2

   ) 
x

. 

Clearly, the larger the value of x, the closer that y gets to zero. Although 
there is no value of x that will produce a value of y equal to zero, we can get 
as close to zero as we wish. For example, if we wish to produce a value of y 

within 0.001 of zero, then we could choose x 5 10 and y 5   (   1 __ 
2

   )  
10

  5   1 ____ 
1024

   

 0.000  976  56; and if we want a result within 0.000  0001 of zero, then we 

could choose x 5 24 and y 5   (   1 __ 
2

   )  
24

  5   1 _________ 
16 777 216

    0.000  000  059  605; and 

so on. Therefore, we can conclude that   lim    
n  →  ̀

    (   1 __ 
2

   )  
n

 5 0.

In calculus we are interested in limits of functions of real numbers. 
Although many of the limits of functions that we will encounter can only 
be approached and not actually reached (as in Example 1), this is not 
always the case. For example, if asked to evaluate the limit of the function 

f (x) 5   x__ 
2

   2 1 as x approaches 6, we simply need to evaluate the function 

for x 5 6. Since f (6) 5 2, then   lim    
x → 6

   (   x__ 
2

   2 1 )  5 2. 

However, it is more common that we are unable to evaluate the limit of 
f (x) as x approaches some number c because f (c) does not exist.

Example 2 

Find the following two limits using your GDC to analyze the behaviour of 
the relevant function.

a)   lim    
x → 0

    sin x____ x   b)   lim    
x → 0

    cos x 2 1 ________ x  

The line y 5 c is a horizontal 
asymptote of the graph of a 
function y 5 f (x) if either 
  lim    
x → ̀

  f (x) 5 c or   lim    
x → 2`

  f (x) 5 c. 

For example, the line y 5 0 
(x-axis) is a horizontal 
asymptote of the graph of 

y  5   (    1 __ 2   )  
x
  because   lim    

x → ̀
   (   1 __ 2   )  

x
  5 0.
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Solution

a) We are not able to evaluate this limit by direct substitution because when 

 x5 0,   sin x____ x    5   0 __ 
0

   and is therefore undefined. Let’s use our GDC again to 

 analyze the behaviour of the function f (x) 5   sin x____ x  as x approaches zero 

 from the right side and the left side.

 Although there is no point on the graph of y 5   sin x____ x  corresponding to 

 x 5 0, it is clear from the graph that as x approaches zero (from either 

 direction) the value of   sin x____ x  converges to one. We can get the value of

  sin x____ x  arbitrarily close to 1 depending on our choice of x. 

 If we want   sin x____ x  to be  within 0.001 of 1, we choose x 5 0.05 giving

   sin 0.05 _______ 
0.05

    0.999  583 and 1 2 0.999  583 5 0.000  417 , 0.001; and if 

 we want   sin x____ x  to be within 0.000  001 of 1, then we choose x 5 0.002 

 giving   sin 0.02 _______ 
0.02

    0.999  999  3333  and 1 2 0.999  999  3333 

 5 0.000  000  6667 , 0.000  001; and so on. 

 Therefore,   lim    
x → 0

    sin x____ x  5 1.

b) As with y 5   sin x____ x  , substituting x 5 0 into the function y 5   cos x 2 1 ________ x   

produces the meaningless fraction   0 __ 
0

  . The graph of y 5   cos x 2 1 ________ x   (GDC 

images right) reveals that the function values approach 0 as x goes to 0. A 
table produced on a GDC also shows that the function values approach 
zero from both directions.

Therefore,   lim    
x → 0

    cos x 2 1 ________ x   5 0.

These two limits are confirmed analytically in the next section.

The analysis and result for Example 2 illustrates why it is preferred (and often 

necessary) that in calculus the argument of a trigonometric function be in radian 

measure rather than degrees. The limit of   sin x ____ x    as x goes to ` is not equal to 1 if x is 

in degrees. With your GDC in radian mode, duplicate the graph of y 5   sin x ____ x    shown 

in the solution for Example 2. Now change the window dimensions on your GDC to 

Xmin 5 2720 and Xmax 5 720 (equivalent to 24p and 4p) and graph y 5   sin x ____ x    in 

degree mode. Explain why no graph appears.

x

y

y �

0.5

sin x
x

1

0 2π 4π�4π �2π

Plot1
Y1= sin(X)/X

Y1(–.05)
=       .9995833854
Y1(.05)
=       .9995833854
1-Ans
=  4.166145864E-4

Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

Y1(–.002)
=       .9999993333
Y1(.002)
=       .9999993333
1-Ans
=    6.66666655E-7

Plot1
Y1= (cos(X)–1)/X

Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=

X   Y1

X=–.03

–.03
–.02
–.01
0
.01
.02
.03

.015

.01

.005
ERROR
–.005
–.01
–.015

–.03
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Functions do not necessarily converge to a finite value at every point – it’s 
possible for a limit not to exist.

Example 3 

Find   lim    
x → 0

    1 __ 
x2

  , if it exists.

Solution

As x approaches zero, the value of   1 ___ 
x2 

  becomes increasingly large in the 

positive direction. The graph of the function (left) seems to indicate that 

we can make the values of y 5   1 __ 
x2

   arbitrarily large by choosing x close 

enough to zero. Therefore, the values of y 5   1 __ 
x2

   do not approach a finite 

number, so   lim    
x → 0

    1 __ 
x2

   does not exist.

Although we can describe the behaviour of the function y 5   1 __ 
x2

   by writing 

  lim    
x → 0

    1 __ 
x2

   5 `, this does not mean that we consider ` to represent a number 

– it does not. This notation is simply a convenient way to indicate in what 
manner the limit does not exist. 

Limit of a function
If f (x) becomes arbitrarily close to a unique finite number L as x approaches c from 
either side, then the limit of f (x) as x approaches c is L. The notation for indicating this 
is   lim    

x → c
  f (x) 5 L. 

When a function f (x) becomes arbitrarily close to a finite number L, we say that f (x) 
converges to L.

It is interesting to note that if you ask your GDC to evaluate the function y 5   sin x ____ x    for a sufficiently small value of x it will give 
a result of exactly 1. The function is undefined for x 5 0 and can never give a result of exactly 1, so obviously the calculator is 
making an error. Due to memory restrictions the calculator has rounded off the result to 1. The GDC image below shows that for 
x 5 0.000 01 the result has been rounded to 1 when the actual value is 0.999 999 999 98 

_
 3  (digit 3 repeating). Even the Google 

calculator (see image below) gives an incorrect result.

x

y

y � 1
x2

0

sin(.00001)/.000
01 1

The line x 5 c is a vertical 
asymptote of the graph of a 
function y 5 f (x) if either 
  lim    
x → c

  f (x) 5 ` or   lim    
x → c

  f (x) 5 2`. 

For example, the line x 5 0 
( y-axis) is a vertical asymptote of

the graph of y 5   1 ___ x 2
   because

  lim    
x → 0

     1 ___ x 2
   5 `.
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Solution

a)   lim    
x → ̀

    5x 2 3 ______ x  5    lim    
x → ̀

   (   5x__ x 2   3 __ x)  Split the fraction into two terms and …

 5    lim    
x → ̀

  5 2    lim    
x → ̀

    3 _ x …  evaluate the limit of each term separately.

 5 5 2 0 5 5 Therefore,    lim    
x → ̀

    5x 2 3 _____ x  5 5.

b)   lim    
p → 0

  (3x2 2 4px 1 p2) 5   lim    
p → 0

  3x 2 2   lim    
p → 0

  4px 1   lim    
p → 0

  p2 Evaluate the limit of each term separately.

 5 3x2 2 0 1 0 5 3x2 Therefore,   lim    
p → 0

  (3x2 2 4px 1 p 2) 5 3x2.

c)    lim    
h → 0

    
[(x 1 h)2 2 6] 2 (x2 2 6)

  ______________________  
h

 5   lim    
h → 0

    x2 1 2xh 1 h2 2 6 2 x2 1 6   _______________________  
h

 

5    lim    
h → 0

    2xh 1 h2
 ________ 

h
 

5    lim    
h → 0

    
h(2x 1 h)

 _________ 
h

 

5    lim    
h → 0

  2x 1   lim    
h → 0

  h

5 2x 1 0 5 2x

Therefore,    lim    
h → 0

     
[(x 1 h)2 2 6] 2 (x2 2 6)

  ______________________  
h

 52x.

For our purposes in this course, it is also important to be able to apply 
some basic algebraic manipulation in order to evaluate the limits of some 
functions algebraically, rather than by conjecturing from a graph or table.

The following five properties of limits are also useful.

Properties of limits
Let a and b be real numbers, and let f and g be functions with the following limits.

  lim    
x → a

  f (x) 5 L and   lim    
x → a

  g(x) 5 K

1 Constant:   lim    
x → a

  b 5 b

2 Scalar multiple:   lim    
x → a

  [b  f (x)] 5 b  L

3 Sum or difference:   lim    
x → a

  [f (x) 6 g(x)] 5 L 6 K

4 Product:   lim    
x → a

  [f (x)  g(x)] 5 L  K

5 Quotient:   lim    
x → a

   [   f (x)
 ____ 

g(x)
   ]  5   L __ 

K
    K  0

Example 4 

Evaluate each limit algebraically.

a)    lim    
x → ̀

    5x 2 3 ______ x  b)    lim    
p → 0

  (3x2 2 4px 1 p2)

c)    lim    
h → 0

    
[(x 1 h)2 2 6] 2 (x2 2 6)

  _____________________  
h

  d)   lim    
x → ̀

    3x2 1 5x 2 1 ___________ 
2x2 1 1

  

Often when trying to 
determine the limit of a 
quotient by direct substitution, 
we may get a meaningless 
fraction such as   0 __ 0   or    ̀   __  ̀    . 
Such an expression is called 
an indeterminate form 
because we cannot use it to 
determine the desired limit. 
When confronted with an 
indeterminate form we need 
to perform some algebraic 
manipulation to the quotient 
to get it into a form so that the 
limit can be evaluated by direct 
substitution and/or applying 
known limits.
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d)   lim    
x → ̀

    3x2 1 5x 2 1 ___________ 
2x2 1 1

   Dividing numerator and denominator by 

largest power of x. i.e. x2.

 5   lim    
x → ̀

    
  3x2 ___ 
x2

   1   5x__ 
x2

   2   1 __ 
x2

  
  ____________ 

  2x2 ___ 
x2

   1   1 __ 
x2

  
   

5   lim    
x → ̀

    
3 1   5 __ x  2   1 __ 

x2
  
 __________ 

2 1   1 __ 
x2

  
  

5    
  lim    
x → ̀

  3 1    lim    
x → ̀

    5 __ x  2    lim    
x → ̀

    1 __ 
x2

  
  _____________________  

  lim    
x → ̀

  2 1    lim    
x → ̀

    1 __ 
x2

  
   Applying   lim    

x → a
  [   f(x)

 ____ 
 g (x)

   ]  5   L _ 
K

   

 and   lim    
x → a

 [  f (x) 6 g (x)] 5 L6 K.

5   3 1 0 2 0 _________ 
2 1 0

  

Therefore,   lim    
x → ̀

    3x2 1 5x 2 1 ___________ 
2x2 1 1

   5   3 __ 
2

  .

The limits in parts b) and c) of Example 4 show that in some cases the  
limit of a function is itself a function.

In this section we evaluated limits by guessing and checking with the  

help of our GDC. This process led us to conclude that   lim    
x → 0

    sin x _____ x    5 1 and

  lim    
x → 0

  cos   x 2 1 ______ x    5 0. 

It was reasonable to take this approach since it is not possible to perform 
algebraic manipulations on these expressions as we did with the expressions 
in Example 4. However, if possible we should always try to use analytic 
methods to evaluate a limit as illustrated in the next example.

Example 5�

a) Estimate the value of   lim    
x → 0

    
  √

______

 x2 1 4   2 2
 ___________ 

x2
   by evaluating the function 

 f(x) 5   
  √

______

 x2 1 4   2 2
 ___________ 

x2
   for x 5 60.5, 60.01, 60.0001, 60.000 005, 60.000 001.

Connect the limit in Example 4 part d) with the end behaviour of rational functions 

covered in Section 3.4. Since   lim    
x → ̀

    3x  2 1 5x 2 1  ____________ 
2x  2 1 1

   5   3 __ 2  , the rational function 

y 5   3x  2 1 5x 2 1  ____________ 
2x  2 1 1

   will have a horizontal asymptote of y 5   3 __ 2  . In other words, as 

x → ` or x → 2` the function will approach the value of y 5   3 __ 2   as illustrated in the 
graph shown.

x

y

y �

�3

�2

�1

1

0

2

3

�4�6�8 �2 2 4 6 8

3
2

y � 3x2 � 5x � 1
2x2 � 1
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b) Using algebra and properties of limits, evaluate   lim    
x → 0

    
  √

______

 x2 1 4   2 2
 ___________ 

x2
  .

c) Comment on the two results.

Solution

a) A GDC that displays results to an accuracy of ten significant figures 
gives the following results.

x f(x) 5   
  √

______

 x2 1 4   2 2
 ___________ 

x2
  

60.5 0.246 211 2512

60.01 0.249 998 438

60.0001 0.25

60.000 005 0.248

60.000 003 0.244 444 4444

60.000 001 0

The GDC results in the table seem unusual. Initially as x approaches 
zero from either direction the function values appear to be 
approaching   1 _ 4  , but then as the function is evaluated for values even 
closer to zero, the function values continue to decrease to zero. 

Is   lim    
x → 0

    
  √

______

 x2 1 4   2 2
 ___________ 

x2
   equal to   1 _ 4   or 0? 

If we trust our GDC, we may be tempted to conclude that    lim    
x → 0

    
  √

______

 x2 1 4   2 2
 ___________ 

x2
   5 0.

b) We cannot immediately apply the limit property for quotients, 

  lim    
x → a

   [   f(x)
 ____ 

g(x)
   ]  5   L__ 

K
  because we obtain the indeterminate form   0 __ 

0
  . 

We need to use the algebraic technique of multiplying numerator and 
denominator by the conjugate of the expression in the numerator. 
This will ‘rationalize’ the numerator – and may lead to an equivalent 
expression for which we can apply the quotient property for limits.

  lim    
x → 0

    
  √

______

 x2 1 4   2 2
 ___________ 

x2
   5   lim    

x → 0
    
  √

______

 x2 1 4   2 2
 ___________ 

x2
      

  √
______

 x2 1 4   1 2
 ___________ 

  √
______

 x2 1 4   1 2
  

5   lim    
x → 0

     
  (   √

______

 x2 1 4   )  
2
  2 22

  ______________  
x2 (   √

______

 x2 1 4   1 2 ) 
  

5   lim    
x → 0

    x2 1 4 2 4  ______________  
x2 (   √

______

 x2 1 4   1 2 ) 
  

5   lim    
x → 0

    x2 ______________  
x2 (   √

______

 x2 1 4   1 2 ) 
   

5   lim    
x → 0

    1 ___________ 
  √

______

 x2 1 4   1 2
  

5   
 lim 1    
x → 0

  
 ______________  

  lim    
x → 0

    √
______

 x2 1 4   1 2
   5   1 ______ 

  √
__

 4   + 2
   5   1 __ 4  

Therefore,   lim    
x → 0

    
  √

______

 x2 1 4   2 2
 ___________ 

x2
   5   1 __ 4  .
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c) Because of memory limitations a GDC will sometimes give a false 
value. Because   √

______

 x2 1 4   is very close to 2 when x is very small, a GDC 
will eventually consider   √

______

 x2 1 4   to be equal to 2.000 000 00 … (to as 
many digits as the GDC is capable of computing) when x is sufficiently 
small. Your GDC is a very powerful tool, but like any tool it does have 
its limitations.

Exercise 13.1

In questions 1–4, evaluate each limit algebraically and then confirm your result by 
means of a table or graph on your GDC.

 1   lim    
n → ̀

    1 1 4n ______ n    2   lim    
h → 0

  (3x 2 1 2hx 1 h2)

 3   lim    
d → 0

    
(x 1 d )2 2 x 2

 ___________ 
d

    4   lim    
x → 3

    x 2 2 9 ______ x 2 3
  

In questions 5–7, investigate the limit of the expression (if it exists) as x → ̀  by 
evaluating the expression for the following values of x: 10, 50, 100, 1000, 10  000 and 
1  000  000. Hence, make a conjecture for the value of each limit.

 5   lim    
x → ̀

    3x 1 2 ______ x 2 2 3
    6   lim    

x → ̀
    5x 2 6 ______ 2x 1 5    7   lim    

x → ̀
    3x 2 1 2 _______ x 2 3  

In questions 8–13, find the limit, if it exists.

 8   lim    
x → 4

    x 2 4 _______ x 2 2 16
    9   lim    

x → 1
    x 2 1 x 2 2 __________ x 2 2 1

  

10   lim    
x → 0

      
√

_____
 2 1 x   2   √

__
 2   ___________ x     

 Hint: multiply numerator and denominator by 
conjugate of numerator

11   lim    
x → ̀

    x 3 2 1 ___________ 
4x 3 2 3x 1 1

  

12   lim    
x → 0

    tan x _____ x      Hint: rewrite tan x as   sin x _____ cos x   and apply property   lim    
x → 0

  [f  (x)  g(x)] 5 L  K

13  lim     → 0    sin 3_____ 

     Hint: rewrite   sin 3_____ 


   as  ( 3  sin 3_____ 

3
    )  and apply   lim    

x → 0
    sin x ____ x    5 1

14 Use the graphing or table capabilities of your GDC to investigate the values of 

 the expression  ( 1 1   1 __ c   ) 
c
 as c increases without bound (i.e. c → ̀ ). Explain the 

significance of the result.

15 If it is known that the line y 5 3 is a horizontal asymptote for the function f (x), 
state the value of each of the following two limits:   lim    

x → ̀ 
 f (x) and   lim    

x → 2`
 f (x).

16 If it is known that the line x 5 a is a vertical asymptote for the function g(x) and 
g(x)  .  0, what conclusion can be made about   lim    

x → a
 g (x)?

17 State the equations of all horizontal and vertical asymptotes for the following 
functions. Confirm using your GDC.

a) f (x) 5   3x 2 1 ______ 1 1 x   b) g (x) 5   1 _______ 
(x 2 2)2   c) g (x) 5   1 _____ x 2 a   1 b

d) R(x) 5   2x 2 2 3 _______ x 2 2 9
   e) d(x) 5   5 2 3x _______ x 2 2 5x    f ) p(x) 5   x 2 2 4 ______ x 2 4
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 13.2 The derivative of a function: 
definition and basic rules

Tangent lines and the slope (gradient) of a curve
In Section 1.6, we reviewed linear equations in two variables. And, later in 
Section 2.1, we established that any non-vertical line represents a function 
for which we typically assign the variables x and y for values in the domain 
and range of the function, respectively. Any linear function can be written in 
the form y 5 mx 1 c. This is the slope-intercept form for a linear equation, 
where m is the slope (or gradient) of the graph and c is the y-coordinate of 
the point at which the graph intersects the y-axis (i.e. the y-intercept). The 

value of the slope m, defined as m 5   
y2 2 y1 ______ x2 2 x1

   5   
vertical change

  _______________  
horizontal change

  , will be 

the same for any pair of points, (x1, y1) and (x2, y2), on the line. An essential 
characteristic of the graph of a linear function is that it has a constant 
slope. This is not true for the graphs of non-linear functions. 

Consider a person walking up the side of a pitched roof as shown in 
Figure 13.4. At any point along the line segment PQ the person is 
experiencing a slope of   3 _ 4  . Now consider someone walking up the curve 
shown in Figure 13.5, which passes through the three points A, B and C. 
As the person walks along the curve from A to C, he/she will experience a 
steadily increasing slope. The slope is continually changing from one point 
to the next along the curve. Therefore, it is incorrect to say that a non-
linear function, whose graph is a curve, has a slope – it has infinitelymany 
slopes. We need a means to determine the slope of a non-linear function ata
specificpoint on its graph. 

Imagine if the slope of the curve 
in Figure 13.5 stopped increasing 
(remained constant) after point 
B. From that point on, a person 
walking up the curve would move 
along a line with a slope equal to 
the slope of the curve at point B. 
This line – containing point D in 
the diagram – only ‘touches’ 

For questions 18 and 19, a) use your GDC to estimate the limit, and b) use analytic 
methods to evaluate the limit.

18   lim    
x → 2

      
√

______

 x2 1 5   2 3 ___________ x 2 2 2x     19   lim    
x → 1`

    4x 2 1 _______ 
  √

______

 x 2 1 2  
  

20 Show that   lim    
h → 0

      
√

_____

 x 1 h   2   √
__

 x   ___________ 
h

   5   1 ____ 2  √
__

 x     . 

21 Show that   lim    
h → 0

    
  1 _____ x 1 h

   2   1 __ x  
 _________ 

h
   5 2   1 __ x 2   .

4 m

3 m

A

B
D

C

Figure 13.4 Slope of a straight 
line.

Figure 13.5 Slope of a curve.
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the curve once at B. Line (BD) is tangent to the curve at point B. 
Therefore, finding the slope of the line that is tangent to a curve at a certain 
point will give us the slope of the curve at that point. 

Finding the slope of a curve at a point – or better – finding a rule 
(function) that gives us the slope at any point on the curve is very useful 
information in many applications. The slope of a line, or of a curve at a 
point, is a measure of how fast variable y is changing as variable x changes. 
The slope represents the rate of change of y with respect to x. To find the 
slope of a tangent line, we first need to clarify what it means to say that a 
line is tangent to a curve at a point. Then we can establish a method to find 
the tangent line at a point.

The three graphs in Figure 13.6 show different configurations of tangent 
lines. A tangent line may cross or intersect the graph at one or more points.

For many functions, the graph has a tangent at every point. Informally, a 
function is said to be smooth if it has this property. Any linear function 
is certainly smooth, since the tangent at each point coincides with the 
original graph. However, some graphs are not smooth at every point. 
Consider the point (0, 0) on the graph of the function y 5 uxu 
(Figure 13.7). Zooming in on (0, 0) will always produce a V-shape rather 
than smoothing out to appear more and more linear. Therefore, there is no 
tangent to the graph at this point.

One way to find the tangent line of a graph at a particular point is to make 
a visual estimate. Figure 13.8 reproduces the time-distance graph for an 
object’s motion from the previous section (Figure 13.1). The slope at any 
point (t, y) on the curve will give us the rate of change of the distance y 
with respect to time t, in other words the object’s instantaneous velocity 
at time t. In the figure, an estimate of the line tangent to the curve at (5,  3) 
has been drawn. Reading from the graph, the slope appears to be   4 _ 6   5   2 _ 3  . Or, 

 Hint: The word ‘curve’ can often 
mean the same as ‘function’, even if 
the function is linear.

x0 0 0

y
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y
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4
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Figure 13.7 y 5 |x|
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The slope (gradient) of a curve 
at a point is the slope of the 
line that is tangent to the curve 
at that point.

Figure 13.6 Different 
configurations of lines tangent to 
a curve.

Figure 13.8 Estimating the slope 
of a tangent line.
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in other words, the object has a velocity of approximately 0.667  m/s at the 
instant when t 5 5 seconds.

A more precise method of finding tangent lines makes use of a secant line 
and a limit process. Suppose that f is any smooth function, so the tangent to 
its graph exists at all points. A secant line (or chord) is drawn through the 
point for which we are trying to find a tangent to f  and a second point on 
the graph of f, as shown in Figure 13.9a. If P is the point of tangency with 
coordinates (x, f (x)), choose a point Q to be horizontally some h units away. 
Hence, the coordinates of point Q are (x 1 h, f (x 1 h)). Then the slope of 

the secant line (PQ) is msec 5   
f (x 1 h) 2 f (x)

  _____________  
(x 1 h) 2 x

  5   
f (x 1 h) 2 f (x)

  _____________ 
h

 . 

The right side of this equation is often referred to as a difference quotient. 
The numerator is the change in y, and the denominator h is the change in x. 
The limit process of achieving better and better approximations for the 
slope of the tangent at P consists of finding the slope of the secant (PQ) 
as Q moves ever closer to P, as shown in the graphs in Figure 13.9b and 
Figure 13.9c. In doing so, the value of h will approach zero.

x

h

0

f(x � h) � f(x)

f(x)

Q(x � h, f(x � h))

P(x, f(x))

y

Figure 13.9a

x

h

f(x � h) � f(x)

f(x)

Q(x � h, f(x � h))

P(x, f(x))

y

0

Figure 13.9b

Figure 13.9c As h tends to zero, 
the secant line becomes a better 
approximation of the tangent line.

x

h

f(x � h) � f(x)

f(x)

Q(x � h, f(x � h))

P(x, f(x))

y

0

Figure 13.9d Tangent to f at point P.

x

f(x)

P(x, f(x))

y

0
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By evaluating a limit of the slope of the secant lines as h approaches zero, 
we can find the exact slope of the tangent line at P(x, f (x)).

The slope (gradient) of a curve at a point
The slope of the curve y 5 f (x) at the point (x, f (x)) is equal to the slope of its tangent 
line at (x, f (x)), and is given by

mtan 5   lim    
h → 0

  msec 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  _____________ 
h

  

provided that this limit exists.

Let’s apply the definition of the slope of a curve at a point to find a rule, or 
function, for the slope of all of the tangent lines to a curve.

Example 6 

Find a rule for the slopes of the tangent lines to the graph of f (x) 5 x2 1 1. 
Use this rule to find the exact slope of the curve at the point where x 5 0 
and at the point where x 5 1.

Solution

Let (x, f (x)) represent any point on the graph of f. By definition, the slope 
of the tangent line at (x, f (x)) is:

m 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  _____________ 
h

  5   lim    
h → 0

    
[(x 1 h)2 1 1] 2 [x 2 1 1]

  ______________________  
h

 

5   lim    
h → 0

    
[x 2 1 2xh 1 h2 1 1] 2 [x 2 1 1]

   __________________________  
h

 

5   lim    
h → 0

    x 2 2 x 2 1 2xh 1 h2 1 1 2 1   _______________________  
h

 

5   lim    
h → 0

    
h(2x 1 h)

 _________ 
h

 

5   lim    
h → 0

  (2x 1 h)

5 2x

Therefore, the slope at any point (x, f (x)) on the graph of f is 2x.

At the point where x 5 0, the slope is 2(0) 5 0. This makes visual sense 
because the point (0, 1) is the vertex of the parabola y 5 x 2 1 1, and we 
expect that the tangent at this point is a horizontal line with a slope of 
zero. At the point where x 5 1, the slope is 2(1) 5 2. This also makes visual 
sense because moving along the curve from (0, 1) to (1, 2) the slope is 
steadily increasing.

In Example 6, from the function f (x) 5 x 2 1 1 we used the limit process to 
derive another function with the rule 2x. With this derived function we can 
compute the slope (gradient) of the graph of f (x) at a point from simply 
inputting the x-coordinate of the point. This derived function is called the 
derivative of f at x. It is given the notation f 9(x), which is commonly read 
as ‘f prime of x’, or simply, ‘the derivative of f of x.’

x

y

2

4

5

1

3

10 2

f(x) � x2 � 1

�2 �1

x

y
f(x) � x2 � 1

2

4

5

1

3

10 2

Tangent
line
at (1, 2)Tangent line

at (0, 1)

�2 �1

The word ‘secant’, as applied 
to a line, comes from the Latin 
word secare, meaning to cut. 
The word ‘tangent’ comes from 
the Latin verb tangere, meaning 
to touch.
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The derivative and differentiation
• The derivative, f 9(x), at a point x in the domain of f is the slope (gradient) of the 

graph of f at (x, f (x)), and is given by 

f 9(x) 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  _____________ 
h

  

provided that this limit exists.
• If the derivative exists at each point of the domain of f, we say that f is smooth.
• The process of finding the derivative, f 9(x), is called differentiation.
• If y 5 f (x), then f 9(x) is a formula for the instantaneous rate of change of y with 

respect to x. 

Differentiating from first principles
Depending on the particular purpose that you have in differentiating a 
function, you can consider the derivative as giving the slope of the graph 
of the function or the rate of change of the dependent variable (commonly 
y) with respect to the independent variable (commonly x). Both 
interpretations are useful and widely applied. 

Using the limit definition directly to find the derivative of a function (as we 
did in Example 6) is often called ‘differentiating from first principles’.

Example 7 

Differentiating from first principles, find the derivative of f (x) 5 x 3.

Solution

f 9(x) 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  _____________ 
h

  5   lim    
h → 0

    
(x 1 h)3 2 x 3

  ___________ 
h

 

5   lim    
h → 0

    
(x 1 h)(x 1 h)2 2 x 3

  _________________ 
h

 

5   lim    
h → 0

    
(x 1 h)(x 2 1 2hx 1 h2) 2 x 3

   ________________________  
h

 

5   lim    
h → 0

    x 3 1 3hx 2 1 3h2x 1 h3 2 x 3
   _______________________  

h
 

5   lim    
h → 0

    
h(3x 2 1 3hx 1 h2)

  _______________ 
h

 

5   lim    
h → 0

  (3x 2 1 3hx 1 h2)

5 3x 2

Therefore, the derivative of f (x) 5 x3 is f 9(x) 5 3x 2.

As in Example 6, the result for Example 7 is a function that gives us the 
slope at any point on the graph of y 5 x 3. For example, the points
(1, 1) and (21, 21) both lie on y 5 x 3, and the slopes at these points 
are respectively f 9(1) 5 3(1)2 5 3 and f 9(21) 5 3(21)2 5 3. Hence, the 
tangents at these points will be parallel, as shown in Figure 13.10.

x

y

y � x3

�2

�1

0

1

2

slope � 3

�1 1

(1, 1)

(�1, �1)

Figure 13.10 Two tangents to
y 5 x3 that are parallel.

If finding the derivative of a 
function indicated with the 
function notation f (x), then – as 
shown already – the derivative 
is usually denoted as f 9(x). 
However, there are two other 
notations with which you should 
be familiar. Commonly, if a 
function is given as y in terms of 
x, then the derivative is denoted 
as y 9, read as ‘y 

prime.’  The notation   
dy

 ___ 
dx   is 

also often used to indicate a 
derivative, and is read as ‘the 
derivative  of y with respect to 

x.’  Note:   
dy

 ___ 
dx   is not a fraction. If, 

for example, y 5 x 2 1 1, the 
derivative can be denoted by 

writing   d ___ 
dx   (x 2 1 1) 5 2x. This is 

read as ‘the derivative of x 2 1 1 
with respect to x is 2x.’
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Let’s examine the relationship between the slopes of tangents to the 
curve f (x) 5 x2 1 1 (Example 6) and slopes of tangents to g (x) 5 x2. 
Recall that we found the derivative of f (x) to be f 9(x) 5 2x. It appears 
from the graphs of f and g, in Figure 13.11, that the slopes of tangents 
at points with the same x-coordinate are equal. For example, the 
tangent to g at the point (1, 2) looks parallel to the tangent to f at 
(1, 1), as shown in Figure 13.11. This implies that the derivatives of 
the two functions are equal. Rather than confirming this conjecture 
by finding the derivative of g (x) 5 x2 by first principles (i.e. using the 
limit definition), let’s use the graphical and computing power of our 
GDC. Any GDC model is capable of computing the slope of a curve at 
a point – either on the GDC’s ‘home’ screen, or its graphing screen. The 
screen images below show computing derivative values for y 5 x 2 on 
the ‘home’ screen.

    Our GDC results 
confirm our 
conjecture that the 
derivative of  
g(x) 5 x 2 is g 9(x) 5 2x.

Example 8 

From first principles, find:

a) y 9 given y 5 3x 2 1 2x b)   
dy

___
dx

 given y 5   1 __ x

Solution

We will apply the definition of the derivative, f 9(x) 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  _____________ 
h

  , 

in both a) and b).

a) y 95   lim    
h → 0

    
[3(x 1 h)2 1 2(x 1 h)] 2 (3x 2 1 2x)

   ______________________________  
h

 

5   lim    
h → 0

    
(3x 2 1 6hx 1 3h2 1 2x 1 2h) 2 (3x 2 1 2x)

    ___________________________________  
h

 

5   lim    
h → 0

    6hx 1 3h2 1 2h_____________ 
h

 

5   lim    
h → 0

  (6x 1 3h 1 2) ⇒ y 9 5 6x 1 2

x

y

f(x) � x2 � 1

g(x) � x2

Tangent
line at (1, 2)

Tangent
line at (1, 1)

0

1

2

3

�1�2 1 2

Figure 13.11

This command finds the value of the derivative 
of y � x2 in terms of x, at the point x � 1.

MATH NUM CPX PRB
4  
5: 
6:fMin(

X

7:fMax(
8:nDeriv(
9:fnInt(
0:Solver…

MATH NUM CPX PRB
1: Frac
2: Dec
3:3

X
4:3 (
5:
6:fMin(
7 fMax(

3 (
nDeriv(X2,X,1)

2

nDeriv(X2,X,1)
2

nDeriv(X2,X,2)
4

nDeriv(X2,X,3)
6

nDeriv(X2,X,-1)
-2
6

nDeriv(X2,X,17)
34

nDeriv(X2,X,-9)
-18

The exact command name and 
syntax for computing the value 
of a derivative at a point may 
vary from one GDC model to 
another.



586

Differential Calculus I--: Fundamentals13

b)   
dy

___
dx

 5   d___
dx

  (   1 __ x) 5   lim    
h → 0

    
  1 _____ 
x 1 h

 2   1 __ x
_________ 

h
 

5   lim    
h → 0

    
  x________
x (x 1 h)

   2   x 1 h________ 
x (x 1 h)

  
  _________________ 

h
 

5   lim    
h → 0

  (      2h________ 
x (x 1 h)

  
 ________ 

  h__ 
1

  
   ) 

5   lim    
h → 0

   (   2h________ 
x (x 1 h)

   ·   1 __ 
h

)

5   lim    
h → 0

   (   –1 ______ 
 x 2  + hx

   )  ⇒   d___
dx

  (   1 __ x) 5 2  1 __ 
x 2

   or   d___
dx

 (x 21) 5 2x 22

Basic differentiation rules
We have now established the following results:
• If f (x) 5 x 2, then f 9(x) 5 2x.
• If f (x) 5 x 2 1 1, then f 9(x) 5 2x.
• If f (x) 5 3x 2 1 2x, then f 9(x) 5 6x 1 2.
• If f (x) 5 x 3, then f 9(x) 5 3x 2.
• If f (x) 5 x 21, then f 9(x) 5 2x 22.

In addition, we know that if f (x) 5 x, then f 9(x) 5 1, since the line y 5 x 
has a constant slope equal to 1; and that if f (x) 5 1, then f 9(x) 5 0 because 
the line y 5 1 is horizontal and thus has a constant slope equal to 0. 
Furthermore, the graph of any function f (x) 5 c, where c is a constant, is a 
horizontal line, confirming that if f (x) 5 c, c [ 핉, then f 9(x) 5 0. In other 
words, the derivative of a constant is zero. This leads to our first basic rule 
of differentiation.

The constant rule
The derivative of a constant function is zero. That is, given c is a real number, and if f (x) 5 c, 
then f 9(x) 5 0.

These following results:  f (x) 5 x 21 ⇒  f 9(x) 5 2x 22

 f (x) 5 x 0 5 1 ⇒  f 9(x) 5 0
 f (x) 5 x 1 5 x ⇒  f 9(x) 5 1
 f (x) 5 x 2 ⇒  f 9(x) 5 2x
 f (x) 5 x 3 ⇒  f 9(x) 5 3x 2

can be summarized in the single statement:

if f (x) 5 x n then f 9(x) 5 nx n 21 for n 5 21, 0, 1, 2, 3

In fact, this statement is true not just for these values but for any value of 
n that is a rational number (n [ 핈). This leads to our second basic rule of 
differentiation.

The derivative of xn

Given n is a rational number, and if f (x) 5 xn, then f 9(x) 5 nx n 2 1.

Functions of the form f (x) 5 x n 
are called power functions, so 
the differentiation rule 

  d ___ 
dx   (x n ) 5 nx n 2 1 gives the 

rule for differentiating power 
functions – and is often referred 
to as the power rule.
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Recall from Chapter 4 the binomial theorem for positive integers 

(a 1 b)n 5  ∑ 
r50

  

n

  ( n    r  ) an2rbr.

Applying this to the limit definition of the derivative gives,

  d___ 
dx

  (xn) 5   lim    
h → 0

    
(x 1 h)n 2 xn

____________ 
h

  

5   lim    
h → 0

  

5   lim    
h → 0

     
 ( xn 1 nxn21h 1   1 _ 2   n(n 2 1)xn22h2 1 … 1 nxhn21 1 hn) 2 xn

__________________________________________________   
h
 

5   lim    
h → 0

  nxn21 1   lim    
h → 0

    1 _ 2   n(n 2 1)xn22h1 … 1   lim    
h → 0

  nxhn22 1   lim    
h → 0

  hn21

5 nxn21 1 0 1 … 1 0 1 0

5 nxn21

Therefore,   d___ 
dx

  (xn) 5 nxn21.

Another basic rule of differentiation is suggested by our result that the 
derivative of f (x) 5 x 2 1 1 is f 9(x) 5 2x. The derivative of a sum of a 
number of terms is obtained by differentiating each term separately – i.e. 
differentiating ‘term-by-term’. That is,

   d___
dx

 (x 2 1 1) 5    d___
dx

 (x 2) 1   d___
dx

 (1) 5 2x 1 0 5 2x.

The sum and difference rule
If f (x) 5 g(x) 6 h(x) then f 9(x) 5 g9(x) 6 h9(x). 

The sum rule for derivatives can help us give a very convincing justification 
of our first differentiation rule: the constant rule. The fact that the 
derivative of a constant must be zero can be verified by considering the 
transformation of the graph of a function (Section 2.4). The graph of the 
function f(x) 1 c, where c [ 핉, is a vertical translation by c units of the 
graph of f(x). As Figure 13.12 illustrates, when the graph of a function is 
translated vertically its shape is preserved. Hence, the slope of the tangent 
line to the graph of f(x) 1 c will be the same as that for f(x) at a particular 
value of x. This means that the derivatives for the two functions must be 
equal. That is,

   d___ 
dx

  [ f(x) 1 c] 5   d___ 
dx

 [ f(x)]

  d___ 
dx

  [ f(x)] 1   d___ 
dx

 (c) 5   d___ 
dx

 [ f(x)]

This is only true if   d___ 
dx

 (c) 5 0.

 (  (   n    0   ) xn +  (   n    1   ) xn – 1h +  (   n    2   ) xn – 2h2 + ... +  (   n          n – 1   ) xhn – 1 +  (   n    n  ) hn)  – xn

h



588

Differential Calculus I--: Fundamentals13

A fourth basic rule of differentiation is illustrated by our result that the 
derivative of f (x) 5 3x 2 1 2x is f 9(x) 5 6x 1 2. Using the sum rule, 

f 9(x) 5   d___
dx

 (3x 2 1 2x) 5   d___
dx

 (3x 2) 1   d___
dx

 (2x) 5 6x 1 2. The fact that 

d___
dx

 (3x 2) 5 6x suggests that 3    d___
dx

 (x 2) 5 3  2x 5 6x. In other words, the 

derivative of a function being multiplied by a constant is equal to the  
constant multiplying the derivative of the function.

The constant multiple rule
If f (x) 5 c · g(x) then f 9(x) 5 c · g9(x).

As mentioned before, and as you have seen, there are different notations 
used for indicating a derivative or differentiation. These can be traced back 
to the fact that calculus was first developed by Isaac Newton (1642–1727) 
and Gottfried Leibniz (1646–1716) independently of each other – and 
hence introduced different symbols for methods of calculus. The ‘prime’ 
notations y 9 and f 9(x) come from notations that Newton used for 

derivatives. The   
dy

___
dx

 notation is similar to that used by Leibniz for 

indicating differentiation. Each has its advantages and disadvantages. For 
example, it is often easier to write our four basic rules of differentiation 
using Leibniz notation as shown below.

Constant rule:   d___
dx

 (c) 5 0, c [ 핉

Power rule:   d___
dx

 (xn) 5 nxn 2 1, n [ 핈

Sum and difference rule:   d___
dx

 [g(x) 1 h(x)] 5   d___
dx

 [g(x)] 1   d___
dx

 [h(x)]

Constant multiple rule:   d___
dx

 [c  f(x)] 5 c    d___
dx

 [f(x)], c [ 핉

Example 9 

For each function: (i) find the derivative using the basic differentiation  
rules; (ii) find the slope of the graph of the function at the indicated 
points; and (iii) use your GDC to confirm your answer for (ii). 

f(x) � c

f(x)

x

yFigure 13.12 Translating the 
graph of a function vertically does 
not alter the slope of the tangent 
line at a particular value of x. Hence 
the derivatives of the two functions 
are equal.
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Function Points

a) f (x) 5 x 3 1 2x 2 2 15x 2 13 (23, 23), (3, 213)

b) f (x) 5 (2x 2 7)2 (2, 9), (  7 _ 2  , 0)

c) f (x) 5 3 √
__

 x 2 6 (4, 0), (9, 3)

d) f (x) 5   x 4 __ 4   2   3x 3 ___ 
2

   2 2x 2 1   15x___ 
2

   1   3 __ 4   (5, 243), (0, 0)

Solution

a)  (i)   d___
dx

 (x 3 1 2x 2 2 15x 2 13) 5   d___
dx

 (x 3) 1 2 ·   d___
dx

 (x 2) 2 15 ·   d___
dx

 (x) 2   d___
dx

 (13) 

5 3x 2 1 2(2x) 2 15(1) 2 0
5 3x 2 1 4x 2 15

Therefore, the derivative of f (x) 5 x 3 1 2x 2 2 15x 2 13 is 
f 9(x) 5 3x 2 1 4x 2 15.

 (ii)  Slope of curve at (23, 23) is f 9(23) 5 3(23)2 1 4(23) 2 15 
5 27 2 12 2 15 5 0.
We should observe a horizontal tangent (slope 5 0) to the curve at 
(23, 23).
Slope of curve at (3, 213) is f 9(3) 5 3(3)2 1 4(3) 2 15 
5 27 1 12 2 15 5 24.
We should observe a very steep tangent (slope 5 24) to the curve at 
(3, 213).

  (iii)  Not only can we use the GDC to compute the value of the derivative 
at a particular value of x on the ‘home’ screen, but we can also do it 
on the graph screen.

The GDC computes a slope of 1E26 at the point (23, 23). 
(1E26 5 1 3 1026 5 0.000  001)

Although the method the GDC uses is very accurate, sometimes there is a 
small amount of error in its calculation. This most commonly occurs when 
performing calculus computations (e.g. the value of the derivative at a 
point). 1E26 5 0.000  001 is very close to zero which is the exact value of the 
derivative. Observe that the graph of y 5 x 3 1 2x 2 2 15x 2 13 appears to 
have a ‘turning point’ at (23, 23), confirming that a line tangent to the curve 
at that point would be horizontal.

Plot1

Y1= X̂ 3+2X2-15X-
13

Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=

CALCULATE
1:value
2:zero
3:minimum
4:maximum

6:dy/dx
X=-3

Y1=Xˆ3+2X2-15X-13

7: f(x)dx

5:intersect

WINDOW
Xmin=-6
Xmax=6
Xscl=1
Ymin=-40
Ymax=40
Yscl=5
Xres=1

dy/dx=1E-6

dy/dx=1E-6

horizontal tangent
’turning point’
(�3, 23)
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Let’s check on our GDC that the slope of the curve is 24 at (3, 213). Again, 
the GDC exhibits a small amount of error in its result.

Most GDCs are also capable of drawing a tangent at a point and displaying 
its equation as shown in the final screen image below.

The equation of the tangent line at (3, 213) is y 5 24x 2 85. We will look 
at finding the equations of tangent lines analytically in the last section of the 
chapter.

b)  (i)   d___
dx

 [(2x 2 7)2] 5   d___
dx

 [(2x 2 7)(2x 2 7)] Differentiate term-by-term 
 after expanding.

5   d___
dx

 (4x 2 2 28x 1 49)

5 4   d___
dx

 (x 2) 2 28   d___
dx

 (x ) 1   d___
dx

 (49)

5 8x 2 28 1 0

Therefore, the derivative of f (x) 5 (2x 2 7)2 is f 9(x) 5 8x 2 28.

  (ii)  Slope of curve at (2, 9) is f 9(2) 5 8(2) 2 28 5 212.

Slope of curve at  (   7 __ 
2

  , 0 )  is f 9( 7 __ 
2

   )  5 8 (   7 __ 
2

   )  2 28 5 0.

Thus, we should observe a horizontal tangent to the curve at  (    7 __ 
2

  , 0 ) .

  (iii) 

There’s no error this time in the GDC’s computation of the slope 

at (2, 9). The vertex of the parabola is at  (    7 __ 
2

  , 0 ) , confirming that it 

has a horizontal tangent at that point.

c)  (i)   d___
dx

 (3  √
__

 x 2 6) 5 3   d___
dx

 ( x    
1
 _ 2   ) 2   d___

dx
 (6)

5 3 (   1 __ 
2

     x2    
1
 _ 2    )  2 0

5   3 ___ 
 2x

1
 _ 2   
  

Therefore, the derivative of f (x) 5 3 √
__

 x 2 6 is f 9(x) 5   3 ___ 
 2x

1
 _ 2   
   or f 9(x) 5   3 ____ 

2 √
__

 x
.

CALCULATE
1:value
2:zero
3:minimum
4:maximum

6:dy/dx
7: f(x)dx

5:intersect

X=3

Y1=Xˆ3+2X2-15X-13

y=24.000001X+-85.000003
X=3

dy/dx=24.000001

X=3.5 Y=0

Y1=(2X-7)2Plot1

Y1=(2X-7)2
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

WINDOW
Xmin=-1
Xmax=6
Xscl=1
Ymin=-2
Ymax=12
Yscl=1
Xres=1 dy/dx=-12

(2,9)
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  (ii) Slope of curve at (4, 0) is f 9(4) 5   3 ____ 
2  √

__
 4  
   5   3 __ 4  .

Slope of curve at (9, 3) is f 9(9) 5   3 ____ 
2  √

__
 9  
   5   1 __ 

2
  .

Thus, because the slope at x 5 9 is less than that at x 5 4, we 
should observe the graph of the equation becoming less steep as  
we move along the curve from x 5 4 to x 5 9.

  (iii) 

The slope of the graph of y 5 3 √
__

 x 2 6 appears to steadily decrease 
as x increases. Let’s check the results for (ii) by evaluating the 
derivative at a point on the ‘home’ screen. The GDC confirms the 
slopes for the curve when x 5 4 and x 5 9, but again the GDC 
computations have incorporated a small amount of error.

d)  (i)   d___
dx

  (   x 4 __ 4   2   3x 3 ___ 
2

   2 2x 2 1   15x___ 
2

   1   3 __ 4   ) 

5   1 __ 4     d___
dx

 (x 4) 2   3 __ 
2

     d___
dx

 (x 3) 2 2   d___
dx

 (x 2) 1   15 ___ 
2

     d___
dx

 (x) 1   d___
dx

  (   3 __ 4   ) 

5   1 __ 4   (4x 3) 2   3 __ 
2

   (3x 2) 2 2   d___
dx

 (2x) 1   15 ___ 
2

   (1) 1 0

5 x 3 2   9x 2 ___ 
2

   2 4x 1   15 ___ 
2

  

Therefore, the derivative of f (x) 5   x 4 __ 4   2   3x 3 ___ 
2

   2 2x 2 1   15x___ 
2

   1   3 __ 4   

is f 9(x) 5 x 3 2   9x 2 ___ 
2

   2 4x 1   15 ___ 
2

   .

  (ii) Slope of curve at (5, 243) is f 9(5) 5 5 3 2   
9(5)2

 _____ 
2

   2 4(5) 1   15 ___ 
2

   5 0.

Thus, there should be a horizontal tangent to the curve at (5, 243).

Slope of curve at (0, 0) is f 9(0) 5   15 ___ 
2

  .

  (iii)  Your GDC is not capable of computing the derivative function 
– only the specific value of the derivative for a given value of x. 
However, we can have the GDC graph the values of the derivative 
over a given interval of x. We can then graph the derivative 
function found from differentiation rules (result from (i)) and see 
if the two graphs match.

Plot1

Y1= 3 (X)-6
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

WINDOW
Xmin=-1
Xmax=10
Xscl=1
Ymin=-7
Ymax=4
Yscl=1
Xres=1

nDeriv(3 (X)-6,X
,4)

.750000006

.5000000009
X=4

Y1=3 (X)- 6

Y=0

nDeriv(3 (X)-6,X
,9)

Plot1

Y1= Xˆ4/4-(3Xˆ3)
Plot2 Plot3

dy/dx=3.5E-6

Y2=
Y3=
Y4=
Y5=

WINDOW

Horizontal
tangent at
(5, �43)

Xmin=-4
Xmax=8
Xscl=1
Ymin=-50
Ymax=50
Yscl=10
Xres=1

/2-2Xˆ2+15X/2+3/
4
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The command nDeriv(Y1, X, X) computes the value of the 
 
   

derivative of function Y1 in terms of x for all x. 

Values of the derivative of f (x) will be graphed as Y2, and the derivative 

function, f 9(x) 5 x 3 2   9x 2 ___ 
2

   2 4x 1   15 ___ 
2

  , determined by manual application 

of differentiation rules (part (i)), will be graphed as Y3. Note that the graph 
of Y3 will be in bold style to distinguish it from Y2, and that the equation Y1 
has been turned ‘off.’

Since the two graphs match, this confirms that the derivative found in part 
(i) using differentiation rules is correct.

Example 10 

The curve y 5 ax 3 1 7x 2 2 8x 2 5 has a turning point at the point where 
x 5 22. Determine the value of a.

Solution

There must be a horizontal tangent, and a slope of zero, at the point where 
the graph has a turning point.


dy

___
dx

 5   d___
dx

 (ax 3 1 7x 2 2 8x 2 5)

 5 a   d___
dx

 (x 3) 1 7   d___
dx

 (x 2) 2 8   d___
dx

 (x) 1   d___
dx

 (25) 5 3ax 2 1 14x 2 8


dy

___
dx

 5 0 when x 5 22: 3a (22)2 1 14(22) 2 8 5 0

 ⇒ 12a 2 28 2 8 5 0 ⇒ 12a 5 36 ⇒ a 5 3

Recall that the derivative of a function is a formula for the instantaneous 
rate of change of the dependent variable (commonly y) with respect to the 
dependent variable (x). In other words, as illustrated earlier in this section, 
the slope of the tangent at a point gives the slope, or rate of change, of the 
curve at that point. The slope of a secant line (that crosses the curve at two 
points) gives the average rate of change between the two points.

Plot1

Y1= Xˆ4/4-(3Xˆ3)
Plot2 Plot3

Y2= nDeriv(Y1,X,
X)

4X+15/2
Y3= Xˆ3-(9X2)/2-

/2-2Xˆ2+15X/2+3/
4

Y1 5   x 4 __ 4   2   3x 3 ___ 
2

   2 2x 2 1   15x___ 
2

   1   3 __ 4   Y2 5 nDeriv(Y1,  X, X) Y3 5 x 3 2   9x2
 ___ 

2
   2 4x 1   15 ___ 

2
  



593

Example 11 

Boiling water is poured into a cup. The temperature of the water in degrees 

Celsius, C, after t minutes is given by C 5 19 1   182 ___ 
 t   

3
 _ 2   
  , for times t > 1 minute.

a) Find the average rate of change of the temperature from t 5 2 to t 5 6.

b) Find the rate of change of the temperature at the instant that t 5 4.

Solution

a) 

 

When t 5 2, C  83.35° and when t 5 6, C  31.38°. The average rate 
of change from t 5 2 to t 5 6 is the slope of the line through the points 
(2, 83.35) and (6, 31.38).

Average rate of change 5   83.35 2 31.38  ____________ 
2 2 6

   5   51.97 _____ 
24   5 212.9925. 

To an accuracy of 3 significant figures, the average rate of change from 
t 5 2 to t 5 6 is 213.0  °C per minute. During that period of time the 
water is, on average, becoming 13 degrees cooler every minute.

b) Let’s compute the derivative   dC___
dt

, i.e. the rate of change of degrees 

C with respect to time t, from which we can compute the rate the 
temperature is changing at the moment when t 5 4.

dC___
dt

 5   d__
dt

  ( 19 1   182 ___ 
 t   

3
 _ 2   
   )  5   d__

dt
 (19 1 182 t 2   

3
 _ 2   ) 5   d__

dt
 (19) 1 182   d__

dt
 ( t 2   

3
 _ 2   ) 

 5 0 1 182  ( –    3 __ 
2

    t  2   3 _ 2    2 1  )  5 2273 t 2   
5
 _ 2   

dC___
dt

 5 2   273 ___ 
 t    

5
 _ 2   
   5 2 273 ___ 

  √
__

 t 5  
  

 At t 5 4: 

dC___
dt

 5 2   273 ___ 
  √

__

 45  
   5 2   273 ___ 

32
    28.53

Therefore, the temperature’s instantaneous rate of change at t 5 4 
minutes is 28.53  °C per minute.
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Differentiating sin x and cos x using limit 
definition for derivative
To add to our growing list of differentiation rules, we will now determine 
the derivatives for the sine and cosine functions. The results will help us 
determine the derivatives for the other trigonometric functions in  
Chapter 15.

The rigorous analytical method (applying limit definition of derivative) 
for finding these two derivatives requires two limit results that we found by 
decidedly non-rigorous methods in Example 2 in the previous section;

namely that   lim    
x → 0

    sin x____ x   5 1 and   lim    
x → 0

    cos x2 1 ________ x   5 0. We conjectured the

value of these limits after exploring the behaviour of the expressions on 
our GDC. Example 5 illustrated that estimating limits by such informal 
methods is not foolproof. Hence, we will now put these two limit results on 
firmer ground through a more rigorous approach.

We first state, without proof, an important theorem in mathematics.

The squeeze theorem
If g(x) < f (x) < h(x) for all x  c in some interval about c, and

  lim    
x → c

  g(x) 5   lim    
x → c

  h(x) 5 L,
then

  lim    
x → c

  f (x) 5 L.

The theorem describes a function f whose values are ‘squeezed’ 
between the values of two other functions, g and h. If g and h 
have the same limit as x→ c, then f has the same limit, as 
suggested by Figure 13.13.
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Figure 13.13 Squeezing f 
between g and h forces the limiting 
value of f to be between the 
limiting values of g and h.
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Consider a sector of a circle with centre O, 
central angle  (in radian measure) and radius 
1 (see Figure 13.14). Further consider right 
triangle AOC, sector AOB and triangle AOB. We 
know that point B has coordinates 
(cos , sin ) and point C has coordinates 
(1, tan ). From Section 7.1, we also know that 
the area of a sector with central angle  is   1 _ 2   r2. 
It is clear that the area of sector AOB must be 
between the area of AOC and the area of 
AOB, that is, the sector is ‘squeezed’ between 
the two triangles (Figure 13.15).

Multiplying all the area expressions by   2 ____ 
sin 

  gives

  1 _____ 
cos 

  >   ____ 
sin 

  > 1.

Given the fact that if   a__ 
b

  .   c__ 
d

 , then   b__ a  ,   d__ c , we can write the reciprocals of the

three expressions and reverse the inequality signs. This gives

cos  <   sin ____ 

   < 1.

It follows that

  lim    
 → 0

  cos  <   lim    
 → 0

    sin ____ 

   <   lim    

 → 0
  1.

From direct substitution,   lim    
 → 0

  cos  5 1. Thus,

1 <   lim    
 → 0

    sin ____ 

   < 1.

We can now apply the squeeze theorem and conclude that   lim    
 → 0

    sin ____ 

   5 1.

Furthermore, because cos(2) 5 cos  and   
sin(2)

 _______ 
2

   5   
sin()

 _____ 

  , we can also

conclude that this limit is true for all non-zero values of  in the interval

2   p__ 
2

   ,  ,   p__ 
2

  .

The above result,   lim    
x → 0

    sin x____ x   5 1, can be used to algebraically deduce that

  lim    
x → 0

    cos x 2 1 ________ x   5 0. This is saved for you to do in Exercise 13.2, question 26.

x

y
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θ
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A
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Figure 13.14 Area 
of sector AOB must be 
between the area of AOC 
and the area of AOB.

Figure 13.15 Area of 
sector AOB is squeezed 
between the two triangles.
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Example 12  

Differentiate from first principles:

a) f(x) 5 sin x b) f(x) 5 cos x

Solution

For both of the derivatives we will need to make use of a compound angle 

identity and the limit results   lim    
x → 0

    sin x____ x   5 1 and   lim    
x → 0

    cos x 2 1 ________ x   5 0.

a) We start by substituting into the limit definition for the derivative.

f9(x) 5   lim    
h → 0

     
f(x 1 h) 2 f(x)

_____________ 
h

  5  lim    
h → 0

    
sin(x 1 h) 2 sin x

_______________ 
h

  

 5   lim    
h → 0

    sin x cos h 1 cos x sin h 2 sin x_________________________  
h

   

 5   lim    
h → 0

   [   sin x cos h 2 sin x_______________ 
h

   1   cos x sin h________ 
h

   ]  

 5   lim    
h → 0

   [ sin x (   cos h 2 1 ________ 
h

   )  1 cos x (   sin h____ 
h

   )  ]  
 5   lim    

h → 0
  sin x    lim    

h → 0
   (   cos h 2 1 ________ 

h
   )  1   lim    

h → 0
  cos x    lim    

h → 0
   (   sin h____ 

h
   )  

 5 sin x  0 1 cos x  1 

 5 cos x

Thus, if f(x) 5 sin x then f9(x) 5 cos x, or using Leibniz notation

  d___ 
dx

 (sin x) 5 cos x.

b) Again, we start by substituting into the limit definition for the derivative.

f9(x) 5   lim    
h → 0

     
f(x 1 h) 2 f(x)

_____________ 
h

  5  lim    
h → 0

    
cos(x 1 h) 2 cos x

________________ 
h

  

 5   lim    
h → 0

    cos x cos h 2 sin x sin h 2 cos x_________________________  
h

      

 5   lim    
h → 0

   [   cos x cos h 2 cos x_______________ 
h

   2   sin x sin h________ 
h

   ]  

 5   lim    
h → 0

   [ cos x (   cos h 2 1 ________ 
h

   )  2 sin x (   sin h____ 
h

   )  ]  
 5   lim    

h → 0
  sin x    lim    

h → 0
   (   cos h 2 1 ________ 

h
   )  2   lim    

h → 0
  sin x    lim    

h → 0
   (   sin h____ 

h
   )  

 5 cos x  0 2 sin x  1 
 5 2 sin x

Thus, if f(x) 5 cos x then f9(x) 5 2 sin x, or using Leibniz notation

  d___ 
dx

  (cos x) 5 2 sin x.

We will confirm these two results graphically at the start of Chapter 15.

Applying sin(A 1 B) 5 sin A cos B 1 cos A sin B.

Splitting argument into two fractions.

Factorizing common factors in each fraction.

Applying   lim    
x → a

  [f (x)  g(x)] 5 L  K.

Applying   lim    
x → 0

    sin x ____ x    5 1 and   lim    
x → 0

    cos x 2 1 ________ x    5 0.

Applying cos(A 1 B) 5 cos A cos B 2 sin A sin B.

Splitting argument into two fractions.

Factorizing common factors in each fraction.

Applying   lim    
x → a

  [f (x)  g(x)] 5 L  K.

Applying   lim    
x → 0

    sin x ____ x    5 1 and   lim    
x → 0

    cos x 2 1
 _______ x    5 0.
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Exercise 13.2

In questions 1–4, find the derivative of the function by applying the limit definition 

f 9(x) 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  ____________ 
h

  .

 1 f (x) 5 1 2 x 2

 2 g(x) 5 x 3 1 2

 3 h(x) 5  √
__

 x  

 4 r (x) 5   1 __ x 2
  

 5 Using your results from questions 1–4, find the slope of the graph of each 
function in 1–4 at the point where x 5 1. Sketch each function and draw a line 
tangent to the graph at x 5 1.

In questions 6–12, a) find the derivative of the function, and b) compute the slope of 
the graph of the function at the indicated point. Use a GDC to confirm your results.

 6 y 5 3x 2 2 4x point (0, 0)

 7 y = 1 2 6x 2 x 2 point (23, 10)

 8 y 5   2 __ x 3
   point (21, 2)

 9 y 5 x 5 2 x 3 2 x point (1, 21)

10 y 5 (x 1 2)(x 2 6) point (2, 216)

11 y 5 2x 1   1 __ x   2   3 __ x 3
   point (1, 0)

12 y 5   x
3 1 1 ______ x 2

   point (21, 0)

13 The slope of the curve y 5 x 2 1 ax 1 b at the point (2, 24) is 21. Find the value 
of a and the value of b.

In questions 14–17, find the coordinates of any points on the graph of the function 
where the slope is equal to the given value.

14 y 5 x 2 1 3x slope 5 3

15 y 5 x 3 slope 5 12

16 y 5 x 2 2 5x 1 1 slope 5 0

17 y 5 x 2 2 3x slope 5 21

18 Use the graph of f to answer each of the following questions.

y

x

f

A

B

C

D
E F

0
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a) Between which two consecutive points is the average rate of change of the 
function greatest?

b) At what points is the instantaneous rate of change of f positive, negative and 
zero?

c) For which two pairs of points is the average rate of change approximately 
equal?

19 The slope of the curve y 5 x 2 2 4x 1 6 at the point (3, 3) is equal to the slope of 
the curve y 5 8x 2 3x 2 at (a, b). Find the value of a and the value of b.

20 The graph of the equation y 5 ax 3 2 2x 2 2 x 1 7 has a slope of 3 at the point 
where x 5 2. Find the value of a.

21 Find the coordinates of the point on the graph of y 5 x 2 2 x at which the 
tangent is parallel to the line y 5 5x.

22 Let f (x) 5 x 3 1 1.

a) Evaluate   
f (2 1 h) 2 f (2)

  ____________ 
h

   for h 5 0.1.

b) What number does   
f (2 1 h) 2 f (2)

  ____________ 
h

   approach as h approaches zero?

23 From first principles, find the derivative for the general quadratic function, 
f (x) 5 ax 2 1 bx 1 c. Confirm your result by checking that it produces:

 (i) the derivative of x 2 when a 5 1, b 5 0, c 5 0
 (ii) the derivative of 3x 2 2 4x 1 2 when a 5 3, b 5 24, c 5 2.

24 A car is parked with the windows and doors closed for five hours. The 
temperature inside the car in degrees Celsius, C, is given by C 5 2 √

__

 t 3   1 17 with t 
representing the number of hours since the car was first parked.

a) Find the average rate of change of the temperature from t 5 1 to t 5 4.

b) Find the function that gives the instantaneous rate of change of the 
temperature for any time t, 0 , t , 5.

c) Find the time t at which the instantaneous rate of change of the temperature 
is equal to the average rate of change from t 5 1 to t 5 4.

25 A function f is even if f (2x) 5 f (x) and a function g is odd if g(2x) 52 g(x).

a) If the function h is even, prove that the derivative of h is odd. In other words, if

h(2x) 5 h(x), then, h9(2x) 5 2h9(x).

b) If the function p is odd, prove that the derivative of h is even. In other words, if

p(2x) 5 2p(x), then, p9(2x) 5 p9(x).

26 Using algebraic manipulation and the proven result   lim    
x → 0

    sin x ____ x    5 1, prove

 that   lim    
x → 0

    
cos x 2 1 ________ x    5 0.

In questions 27–30, find the indicated derivative by applying the limit definition of 
the derivative (i.e. by first principles). (See questions 20 and 21 in Exercise 13.1 for 27 
and 28 below.)

27   d ___ 
dx   (  √__

 x  ) 28   d ___ 
dx    (   1 __ x   ) 

29   d ___ 
dx    (   2 1 x _____ 3 2 x   )  30   d ___ 

dx    (    1 ______ 
  √

_____
 x 1 2  
   ) 

31 Prove the constant rule by first principles. That is, prove that given 
 a constant c, c [ R,   d ___ 

dx   (c) 5 0.
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 13.3 Maxima and minima – first and 
second derivatives

The relationship between a function and its 
derivative
The derivative, written in Newton notation as f 9(x) or in Leibniz notation 

as   
dy

___
dx

, is a function derived from a function f that gives the slope of the 

graph of f at any x in the function’s domain (given that the curve is 
‘smooth’ at the value of x). The derivative is a slope, or rate of change, 
function. Knowing the slope of a function at different values in its domain 
tells us about properties of the function and the shape of its graph.

In the previous section, we observed that if a graph ‘turns’ at a particular 
point (for example, at the vertex of a parabola), then it has a horizontal 
tangent (slope 5 0) at the point. Hence, the derivative will equal zero 
at a ‘turning point’. In Section 3.2, we found the vertex of the graph of a 
quadratic function by using the technique of completing the square to 
write its equation in vertex form. We can also find the vertex by means of 
differentiation. As we look at the graph of a parabola moving from left 
to right (i.e. domain values increasing), it either turns from going down 
to going up (decreasing to increasing), or from going up to going down 
(increasing to decreasing) (Figure 13.16).

Example 13 

Using differentiation, find the vertex of the parabola with the equation  
y 5 x 2 2 8x 1 14.

Solution

Find the value of x for which the derivative,   
dy

___
dx

, is zero. 


dy

___
dx

 5   d___
dx

 (x 2 2 8x 1 14) 5 2x 2 8 5 0 ⇒ x 5 4

Thus, the x-coordinate of the vertex is 4.

To find the y-coordinate of the vertex, we substitute x 5 4 into the 
equation, giving y 5 42 2 8(4) 1 14 5 22. Therefore, the vertex has 
coordinates (4, 22).

vertex horizontal
tangent

Figure 13.16

x

y

y � x2 � 8x � 14

0

5

10

15

�2 �1 1 2 3 4 5 6
(4, �2)

x � 4 x � 4

y decreases
as x increases

y increases
as x increases

7 8

If the graph of a function is 
‘smooth’ at a particular point, 
the function is considered to 
be differentiable at this point. 
In other words, a tangent line 
exists at this point. All functions 
that will be differentiated in this 
course will be differentiable 
at all values in the function’s 
domain.

Figure 13.17 Slope changes from 
negative to positive as x increases.
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We know that the parabola in Example 13 will ‘open up’ because the 
coefficient of the quadratic term, x 2, is positive. The parabola has a negative 
slope (decreasing) to the left of the vertex and a positive slope (increasing) to 
the right of the vertex (Figure 13.17). As the values of x increase, the derivative 
of y 5 x 2 2 8x 1 14 will change from negative to zero to positive, accordingly. 


dy

___
dx

 5 2x 2 8 ⇒   
dy

___
dx

 , 0 for x , 4 and   
dy

___
dx

 5 0 for x 5 4 and   
dy

___
dx

 . 0 for x . 4

In other words, the function f (x) 5 x 2 2 8x 1 14 is decreasing for all 
x , 4; it is neither decreasing nor increasing at x 5 4; and it is increasing 
for all x . 4. A point at which a function is neither increasing nor 
decreasing (i.e. there is a horizontal tangent) is called a stationary point. 
A convenient way to demonstrate where a function is increasing or 
decreasing and the location of any stationary points is with a sign chart 
for the function and its derivative, as shown in Figure 13.18 for  
f (x) 5 x 2 2 8x 1 14. The derivative f 9(x) 5 2x 2 8 is zero only at x 5 4, 
thereby dividing the domain of f (i.e. 핉) into two intervals: x , 4 and x . 4. 
f 9(x) 5 2x 2 8 is a continuous function (i.e. no ‘gaps’ in the domain) so it 
is only necessary to test one point in each interval in order to determine 
the sign of all the values of the derivative in that interval. f 9(x) can only 
change sign at x 5 4. For example, the fact that f 9(3) 5 2(3) 2 8 5 22 , 0 
means that f 9(x) , 0 for all x when x , 4. Therefore, f is decreasing for all 
x in the open interval (2`, 4).

Increasing and decreasing functions and stationary points
If f 9(x) . 0 for a , x , b, then f (x) is increasing on the interval a , x , b.

If f 9(x) , 0 for a , x , b, then f (x) is decreasing on the interval a , x , b.

If f 9(x) 5 0 for a , x , b, then f (x) is constant on the interval a , x , b.

If f 9(x) 5 0 for a single value x 5 c on some interval a , c , b, then f (x) has a 
stationary point at x 5 c. The corresponding point (c, f (c)) on the graph of f is called a 
stationary point.

It is at stationary points, or endpoints of the domain if the domain is not 
all real numbers, where a function may have a maximum or minimum 
value. These points at which extreme values of a function may occur are 
often referred to as critical points. Whether a function is increasing or 
decreasing on either side of a stationary point will indicate whether the 
stationary point is a maximum, minimum or neither. 

Example 14 

Consider the function f (x) 5 2x 3 1 3x 2 2 12x 2 4, x [ 핉.

a) Find any stationary points of f.

b) Using the derivative of f, classify any stationary points as a maximum or 
minimum.

x

↘ ↗f(x)

f �(x) 0 ��

4

f(x) � x2 � 8x � 14
f�(x) � 2x � 8

�∞�∞

Geometrically speaking, a 
function is continuous if there 
is no break in its graph; and a 
function is differentiable (i.e. 
a derivative exists) at any points 
where it is ‘smooth’.

Figure 13.18 Sign chart for f 9(x) 
and f (x).
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Solution

a) f 9(x) 5 6x 2 1 6x 2 12 5 0 ⇒ 6(x 2 1 x 2 2) 5 0 
 ⇒ 6(x 1 2)(x 2 1) 5 0 ⇒ x 5 22 or x 5 1

With a domain of all real numbers there are no domain endpoints that 
may be an extreme value. Thus, f  has two critical points: one at x 5 22 
and the other at x 5 1.

When x 5 22: y 5 2(22)3 1 3(22)2 2 12(22) 2 4 5 16  ⇒ f  has a 
stationary point at (22, 16).

When x 5 1: y 5 2(1)3 1 3(1)2 2 12(1) 2 4 5 211  ⇒ f  has a 
stationary point at (1, 211).

b) Construct a sign chart for f 9(x) and f (x) (left) to show where f  is 
increasing or decreasing. The derivative f 9(x) has two zeros, at x 5 22 
and x 5 1, thereby dividing the domain of f  into three intervals that need 
to be tested. Since f 9(23) 5 6(21)(24) 5 24 . 0, then f 9(x) . 0 for all
x , 22. Likewise, since f 9(2) 5 6(4)(1) 5 24 . 0, then f 9(x) . 0 for all 
x . 1. Thus, f  is increasing on the open intervals (2`, 22) and 
(1, `). Since f 9(0) 5 212 , 0, then f 9(x) , 0 for all x such that 
22 , x , 1. Thus, f  is decreasing on the open interval (22, 1), 
i.e. 22 , x , 1. From this information, we can visualize for increasing 
values of x that the graph of f  is going up for all x , 22, then turning 
down at x 5 22, then going down for values of x from 22 to 1, then 
turning up at x 5 1, and then going up for all x . 1. The basic shape 
of the graph of f  will look something like the rough sketch shown left. 
Clearly, the stationary point (22, 16) is a maximum and the stationary 
point (1, 211) is a minimum.

The graph of f (x) 5 2x 3 1 3x 2 2 12x 2 4 from Example 14 (Figure 13.19) 
visually confirms the results acquired from analyzing the derivative of f. 

For Example 14, we can express the result for part b) most clearly by saying 
that f (x) has a relative maximum value of 16 at x 5 22, and f (x) has a 
relative minimum value of 211 at x 5 1. The reason that these extreme 
values are described as ‘relative’ (sometimes described as ‘local’) is because 

x

f (x)

f �(x)

f �(x) � 6(x � 2)(x � 1)

f (x) � 2x3 � 3x2 � 12x � 4

�2 1

0 0� ��

↔ ↔↘ ↗↗

stationary

stationary

decreasing

increasing

increasing

f(x)

x � �2

x � 1

x

y

y � 2x3 � 3x2 � 12x � 4

�20

�15

�10

�5

5

0

10

15
(�2, 16)

(1, �11)

20

�2�3�4 �1 1 2 3 4 The plural of ‘maximum’ is 
‘maxima’, and the plural of 
‘minimum’ is ‘minima’. Maxima 
and minima are collectively 
referred to as ‘extrema’ – the 
plural of ‘extremum’ (extreme 
value). Extrema of a function 
that do not occur at domain 
endpoints will be ‘turning 
points’ of the graph of the 
function.

Figure 3.19
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they are a maximum or minimum for the function in the immediate 
vicinity of the point, but not for the entire domain of the function. A point 
that is a maximum/minimum for the entire domain is called an absolute, 
or global, maximum/minimum.

The first derivative test
From Example 14, we can see that a function f  has a maximum at some 
x 5 c if f 9(c) 5 0 and f  is increasing immediately to the left of x 5 c and 
decreasing immediately to the right of x 5 c. Similarly, f  has a minimum at 
some x 5 c if f 9(c) 5 0 and f  is decreasing immediately to the left of 
x 5 c and increasing immediately to the right of x 5 c. It is important to 
understand, however, that not all stationary points are either a maximum 
or minimum.

Example 15 

For the function f (x) 5 x 4 2 2x 3, find all stationary points and describe 
them completely.

Solution

f 9(x) 5   d___
dx

 (x 4 2 2x 3) 5 4x 3 2 6x 2 5 0 ⇒ 2x 2(2x 2 3) 5 0

⇒ x 5 0 or x 5   3 __ 
2

  

The implied domain is all real numbers, so x 5 0 and x 5   3 __ 
2

   are the critical 
points of f.

When x 5 0, y 5 f (0) 5 0.

When x 5   3 __ 
2

  , y 5 f  (   3 __ 
2

   )  5  (   3 __ 
2

   ) 
4

 2 2 (   3 __ 
2

   ) 
3

 5   81 ___ 
16

   2   54 ___ 
8

   5 2   27 ___ 
16

   .

Therefore, f has stationary points at (0, 0) and  (   3 __ 
2

  , 2 27 ___ 
16

   ) .

Because f  has two stationary points, there are three intervals for which to 
test the sign of the derivative. We could use some form of a sign chart as 
shown previously, or we can use a more detailed table that summarizes the 
testing of the three intervals and the two critical points as shown below.

Interval/point x , 0 x 5 0 0 , x ,   3 __ 2  x 5   3 __ 2  x .   3 __ 2  

Test value x 5 21 x 5 1 x 5 2

Sign of f 9(x) f 9(21) 5 210 , 0 0 f 9(1) 5 22 , 0 0 f 9(2) 5 8 . 0

Conclusion f decreasing ↘ none f decreasing ↘ abs. min. f increasing ↗

On either side of x 5 0, f  does not change from either decreasing to 
increasing or from increasing to decreasing. Although there is a horizontal 
tangent at (0, 0), it is not an extreme value (turning point). The function 
steadily decreases as x approaches zero, then at x 5 0 the function has a 
rate of change (slope) of zero for an instant and then continues on 

decreasing. As x approaches   3 __ 
2

  , f  is decreasing and then switches to 

increasing at x 5   3 __ 
2

  . 

x

y

y � x4 � 2x3

�3

�2

�1

1

0

2

3

4

5

6

�1 1 2

, �

3

(            )3
2

27
16
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Therefore, the stationary point (0, 0) is neither a maximum nor a minimum; 

and the stationary point  (   3 __ 
2

  , 2 27 ___ 
16

   )  is an absolute minimum. Or, in other 

words, f  has an absolute (global) minimum value of 2 27 ___ 
16

   at x 5   3 __ 
2

  . 

The reason that an absolute, rather than a relative, minimum value occurs 

at x 5   3 __ 
2

   is because for all x ,   3 __ 
2

   the function f  is either decreasing or 

constant (at x 5 0) and for all x ,   3 __ 
2

    f  is increasing.

First derivative test for maxima and minima of a function
Suppose that x 5 c is a critical point of a continuous and smooth function f. That is, f (c) 5 0 and x 5 c is a stationary point or 
x 5 c is an endpoint of the domain.

I. At a stationary point x 5 c:
1. If f 9(x) changes sign from positive to negative as x increases 

through x 5 c, then f has a relative maximum at x 5 c.

2. If f 9(x) changes sign from negative to positive as x increases through 
x 5 c, then f has a relative minimum at x 5 c.

3. If f 9(x) does not change sign as x increases through x 5 c, then f has 
neither a relative maximum nor a relative minimum at x 5 c.

II. At a domain endpoint x 5 c:
If x 5 c is an endpoint of the domain, then x 5 c will be a relative maximum or minimum of f if the sign of f 9(x) is always positive 
or always negative for x . c (at a left endpoint), or for x , c (at a right endpoint), as illustrated below.

If it is possible to show that a relative maximum/minimum at x 5 c is the greatest/least value for the entire domain of f, then it is 
classified as an absolute maximum/minimum.

relative
maximum

f �(x) � 0

c

f �(x) � 0

c

relative
minimum

f �(x) � 0 f �(x) � 0

c

no
extreme

f �(x) � 0 f �(x) � 0

relative
minimum

relative
maximum

cc

f �(x) � 0

f �(x) � 0
relative

minimum

relative
maximum

cc

f �(x) � 0

f �(x) � 0
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Example 16 

Apply the first derivative test to find any local extreme values for f (x). 
Identify any absolute extrema.

f (x) 5 4x 3 2 9x 2 2 120x 1 25

Solution

f 9(x) 5   d___
dx

 (4x 3 2 9x 2 2 120x 1 25) 5 12x 2 2 18x 2 120

f 9(x) 5 12x 2 2 18x 2 120 5 0  ⇒ 6(2x 2 2 3x 2 20) 5 0 
⇒ 6(2x 1 5)(x 2 4) 5 0

Thus, f  has stationary points at x 5 2 5 __ 
2

   and x 5 4.

To classify the stationary point at x 5 2 5 __ 
2

  , we need to choose test points on 

either side of 2 5 __ 
2

  , for example, x 5 23 (left) and x 5 0 (right). Then we 
have

f 9(23) 5 6(21)(27) 5 42 . 0

f 9(0) 5 6(5)(24) 5 2120 , 0

So f  has a relative maximum at x 5 2 5 __ 
2

  . 

f  ( 2 5 __ 
2

   )  5 4 ( 2 5 __ 
2

   ) 
3

 2 9 ( 2 5 __ 
2

   ) 
2

 2 120 ( 2 5 __ 
2

   )  1 25 5 206.25

Therefore, f  has a relative maximum value of 206.25 at x 5 2 5 __ 
2

  .

To classify the stationary point at x 5 4, we need to choose test points on 
either side of 4, for example, x 5 0 (left) and x 5 5 (right). Then we have

f 9(0) 5 2120 , 0

f 9(5) 5 6(15)(1) 5 90 . 0

So f  has a relative minimum at x 5 4. 

f (4) 5 4(4)3 2 9(4)2 2 120(4) 1 25 5 2343

Therefore, f  has a relative minimum value of 2343 at x 5 4.

Change in displacement and velocity
Consider the motion of an object such that we know its position s relative 
to a reference point or line as a function of time t given by s(t). The 
displacement of the object over the time interval from t1 to t2 is:

change in s 5 displacement 5 s(t2) 2 s(t1)

The average velocity of the object over the time interval is:

vavg 5   
displacement

  ____________  
change in time

   5   
s(t2) 2 s(t1) __________ t2 2 t1

  

The object’s instantaneous velocity at a particular time, t, is the value of 
the derivative of the position function, s, with respect to time at t.

velocity 5   ds__
dt

 5 s9(t)
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Example 17 

A rocket is launched upwards into 
the air. Its vertical position, s metres, 
above the ground at t seconds is 
given by  
s(t) 5 25t 2 1 18t 1 1. 

a) Find the average velocity over the 
time interval from t 5 1 second 
to t 5 2 seconds.

b) Find the instantaneous velocity 
at t 5 1 second.

c) Find the maximum height 
reached by the rocket and the 
time at which this occurs.

Solution

a) vavg 5   
s(2) 2 s(1)

 _________ 
2 2 1

   5   
[25(2)2 1 18(2) 1 1] 2 [25 1 18 1 1]

    _________________________________  
1

   

   5 3 metres per second (or m  s21)

b) s9(t) 5 210t 1 18 ⇒ s9(1) 5 210 1 18 5 8  m  s21

c) s9(t) 5 210t 1 18 5 0 ⇒ t 5 1.8

 Thus, s has a stationary point at t 5 1.8. t must be positive and ranges 
from time of launch (t 5 0) to when the rocket hits the ground, i.e. h 5 0. 

s(t) 5 25t2 1 18t 1 1 5 0 ⇒ t 5   
218 6   √

_____________

  182 2 4(25)(1)  
  ____________________  

2(25)
   

⇒ t  20.5472 or t  3.655 

So, the rocket hits the ground about 3.66 seconds after the time 
of launch. Hence, the domain for the position (s) and velocity (v) 
functions is 0 < t < 3.66. Therefore, the function s has three critical 
points: t 5 0, t 5 1.8 and t  3.66.

The maximum of the function, i.e. the maximum height, most likely 
occurs at the critical point t 51.8. Let’s confirm this. 

Applying the first derivative test, we determine the sign of the derivative, 
s9(t), for values on either side of t 5 1.8, for example, t 5 0 and t 5 2. 
s9(0) 5 18 . 0 and s9(2) 5 22 , 0. Neither of the domain endpoints, 
t 5 0 and t  3.66, are at a maximum or minimum because the function 
is not constantly increasing or constantly decreasing before or after the 
endpoint. Since the function changes from increasing to decreasing at  
t 5 1.8 and s(1.8) 5 25(1.8)2 1 18(1.8) 1 1 5 17.2, then the rocket 
reaches a maximum height of 17.2 metres 1.8 seconds after it was 
launched.
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The relationship between a function and its 
second derivative
You may have wondered why the strategy we are applying to locate and 
classify extrema for a function focuses on using the first derivative of the 
function. This implies that we are interested in using some other type of 
derivative, namely the second derivative. There is another useful test for the 
purpose of analyzing the stationary point of a function that makes use of 
the derivative of the derivative, i.e. the second derivative, of the function.

When we differentiate a function y 5 f (x), we obtain the first derivative 

f 9(x)  ( also denoted as   
dy

___
dx

). Often this is a function that can also be 

differentiated. The result of doing so is the derivative of f 9(x), which is 

denoted in Newton notation as f 0(x) or in Leibniz notation as   
d2y

___ 
dx2

   and 

called the second derivative of f  with respect to x. For example, if f (x) 5 x3,
then f 9(x) 5 3x 2 and f 0(x) 5 6x.

Second derivatives, like first derivatives, occur often in methods of applying 
calculus. In Example 17, the function s(t) gave the position, in metres above 
the ground, of a projectile (toy rocket) where t, in seconds, is the time since 
the projectile was launched. The function s 9(t), the first derivative of the 
position function, then gives the rate of change of the object’s position, i.e. 
its velocity, in metres per second (m  s21). Differentiation of this function 
gives the rate of change of the object’s velocity, i.e. its acceleration, measured 
in metres per second per second (m  s22).

The graphs of the position, velocity and acceleration functions for 
Example 17 aligned vertically (Figure 13.20) nicely illustrate the 
relationships between a function, its first derivative and its second 
derivative. The slope of the graph of s(t) is initially a large positive value 
(graph is steep), but steadily decreases until it is zero (horizontal tangent) 
at t 5 1.8 and then continues to decrease, becoming a large negative value 
(again, steep, but in the other direction). This corresponds to the real-life 
situation in which the rocket is launched with a high initial velocity  
(v(0) 5 18  m  s21) and then its velocity decreases steadily due to gravity. 
The rocket’s velocity is zero for just an instant when it reaches its maximum 
height at t 5 1.8 and then its velocity becomes more and more negative 
because it has changed direction and is moving back (negative direction) 
to the ground. The rate of change of the velocity, v 9(t), is constant and it 
is negative because the velocity is decreasing from positive values to zero 
to negative values. This is clear from the fact that the graph of the velocity 
function, v(t), is a straight line with a negative slope. It follows then that 
the acceleration function – the rate of change of velocity – is a negative 
constant, a 5 210 in this case, and its graph is a horizontal line.

In Example 17, it is not possible to have a negative function value for s (t) 
because the rocket’s position is always above, or at, ground level. In many 
motion problems in calculus, we consider a simplified version by limiting 

Position function:
s(t) � �5t2 � 18t � 1
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Figure 13.20 Position, velocity 
and acceleration functions for 
rocket.
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an object’s motion to a line with its position given as its displacement from 
a fixed point (usually the origin). At a position left of the fixed point, the 
object’s displacement is negative, and at a position right of the fixed point, the 
displacement is positive. Velocity can also be positive or negative depending 
on the direction of travel (i.e. the sign of the rate of change of the object’s 
displacement). Likewise, acceleration is positive if velocity is increasing (i.e. 
rate of change of velocity is positive) and negative if velocity is decreasing.

Motion along a line
If an object moves in a straight line such that at time t its displacement (position) from a 

fixed point is s (t), then the first derivative s9(t), also written as   ds __ 
dt

  , gives the velocity v (t) at 
time t. 

The second derivative s 0(t), also written as   d 2s ___ 
dt 2

  , is the first derivative of v (t). Hence, the 

second derivative of the displacement, or position, function is a measure of the rate at 
which the velocity is changing, i.e. it represents the acceleration of the object, which we 
express as

a (t) 5 v9(t) 5 s 0(t) or a (t) 5   dv __ 
dt

   5   d 2s ___ 
dt 2

  .

Example 18 

An object moves along a straight line so that after t seconds its 
displacement from the origin is s metres. Given that s (t) 5 22t 3 1 6t 2, 
answer the following:

a) Find expressions for the (i) velocity and (ii) acceleration at time  
t seconds.

b) Find the (i) initial velocity and (ii) initial acceleration of the object (i.e. 
at time when t 5 0).

c) Find the (i) maximum displacement and (ii) maximum velocity for the 
interval 0 < t < 3.

Solution

a)  (i) v (t) 5   ds__
dt

 5   d__
dt

 (22t 3 1 6t 2) 5 26t 2 1 12t

 (ii) a (t) 5   d 2s___
dt 2

   5   dv__
dt

 5   d__
dt

 (26t 2 1 12t) 5 212t 1 12

b)  (i) v (0) 5 26(0)2 1 12(0) 5 0 ⇒  The object’s initial velocity is 
0  m  s21.

 (ii) a (0) 5 212(0) 1 12 5 12 ⇒  The object’s initial acceleration 
is 12  m  s22.

A common misconception is that acceleration is positive for motion in the positive 
direction (usually ‘right’ or ‘up’) and negative for motion in the negative direction 
(usually ‘left’ or ‘down’). Acceleration indicates how velocity is changing. Even 
though an object may be moving in a positive direction (e.g. to the right) if it is 
slowing down, then its acceleration is acting in the opposite direction and would 
be negative. In Example 17, the rocket was always accelerating in the negative 
direction, 210  m  s22, due to the force of gravity. Note: A more accurate value for the 
acceleration of a free-falling object due to gravity is 29.8  m  s22.

It would be incorrect to graph 
a function and its first and/
or second derivative on the 
same axes. For example, the 
position s(t), velocity v (t) and 
acceleration a(t) functions 
graphed on separate axes in 
Figure 13.20 will have different 
units on each vertical axis: 
metres for s(t), metres per 
second for v(t) and metres per 
second per second for a(t).

Displacement can be 
negative, positive or zero. 
Distance is the absolute value 
of displacement. Velocity can 
be negative, positive or zero. 
Speed is the absolute value of 
velocity.
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c)  (i)  To find the maximum displacement, we can apply the first 
derivative test to s (t). Since the first derivative of displacement, s (t), 
is velocity, v (t), then the critical points of s (t) are where the velocity 
is zero (stationary points) and domain endpoints.

s 9(t) 5 v (t) 5 26t 2 1 12t 5 0  ⇒ 6t (2t 1 2) 5 0 
⇒ v (t) 5 0 when t 5 0 or t 5 2

For the interval 0 < t < 3, the critical points to be tested for 
finding the maximum displacement are at t 5 0, t 5 2 and t 5 3. 
Check whether the velocity is increasing or decreasing on either 
side of the stationary point at t 5 2 by finding the sign of v (t) for 
t 5 1 and t 5 2.5. 
v (1) 5 26(1)2 1 12(1) 5 6 and v (2.5) 5 26(2.5)2 1 12(2.5) 5 27.5 
Hence, the displacement s is increasing for 0 , t , 2 and 
decreasing for 2 , t , 3. This indicates that the stationary point at 
t 5 2 must be an absolute maximum for s in the interval 
0 < t < 3.

s (2) 5 22(2)3 1 6(2)2 5 8

Therefore, the object has a maximum displacement of 8 metres at  
t 5 2 seconds.

 (ii)  To find the maximum velocity, we can apply the first derivative 
test to v (t). The first derivative of v (t) is acceleration a (t), which is 
the second derivative of s (t). Hence, where s 0(t) 5 0 (acceleration 
is zero) indicates critical points for v (t), i.e. where velocity may 
change from increasing to decreasing, or vice versa.

s 0(t) 5 a (t) 5   d__
dt

 (26t 2 1 12t) 5 212t 1 12 

  ⇒ 12(2t 1 1) 5 0 ⇒ a (t) 5 0 when t 5 1

For the interval 0 < t < 3, the critical points to be tested for 
finding the maximum velocity are at t 5 0, t 5 1 and t 5 3. Check 
whether the velocity is increasing or decreasing on either side of  
t 5 1 by finding the sign of a (t) for t 5 0.5 and t 5 2.
a (0.5) 5 212(0.5) 1 12 5 6 and a (2) 5 212(2) 1 12 5 212 
Hence, the velocity v is increasing for 0 , t , 1 and decreasing for 
1 , t , 3. This indicates that the point at t 5 1 must be an absolute 
maximum for v in the interval 0 < t < 3.

v (1) 5 26(1)2 1 12(1) 5 6

Therefore, the object has a maximum velocity of 6 metres per 
second at t 5 1 second.

The second derivative of a function tells us how the first derivative of the 
function changes. From this we can use the second derivative, as we did 
the first derivative, to reveal information about the shape of the graph of 
a function. Note in Example 18 that the object’s velocity changed from 
increasing to decreasing when the object’s acceleration was zero at t 5 1. 
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Let’s examine graphically the significance of the point where acceleration 
is zero (i.e. velocity changing from increasing to decreasing) in connection 
to the displacement graph for Example 18. In other words, what can the 
second derivative of a function tell us about the shape of the function’s 
graph?

Figure 13.21 shows the graphs of the displacement, velocity and 
acceleration functions for the motion of the object in Example 18. A 
dashed vertical line highlights the nature of the three graphs where  
t 5 1. At this point, velocity has a maximum value and acceleration is 
zero. It is also where velocity changes from increasing to decreasing,  
which has a corresponding effect on the shape of the displacement 
function s (t). 

At the point where t 5 1, the graph of s (t) changes from curving 
‘upwards’ (concaveup) to curving ‘downwards’ (concavedown) 
because its slope (corresponding to velocity) changes from 
increasing to decreasing. This can only occur when velocity 
(first derivative) has a maximum and hence where acceleration 
(second derivative) is zero. We can see from this illustration 
that for a general function f (x), finding intervals where the 
first derivative f 9(x) is increasing (positive acceleration) or 
decreasing (negative acceleration) can be used to determine 
where the graph of f (x) is curving upward or curving 
downward. A point at which a function’s curvature (concavity) 
changes – as at t 5 1 for the graph of s (t) left – is called a point 
of inflexion.

Concavity and the second derivative
The graph of f (x) is concave up where f 9(x) is increasing and concave 
down where f 9(x) is decreasing. It follows that:

 (i)  if f 0(x) . 0 for all x in some interval of the domain of f, the graph of f is 
concave up in the interval

 (ii)  if f 0(x) , 0 for all x in some interval of the domain of f, the graph of f is 
concave down in the interval.

If f (x) is a continuous function, its graph can only change concavity (up to 
down, or down to up) where f 0(x) 5 0. Hence, for a continuous function, 
an inflexion point may only occur where f 0(x) 5 0.

Note: Concavity is not defined for a line – it is neither concave up nor 
concave down.
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Example 19 

Determine the intervals on which the graph of y 5 x 4 2 4x 3 is concave up 
or concave down and identify any inflexion points.

Solution

We first note that the function is continuous for its domain of all real 
numbers. To locate points of inflexion, we then find for what value(s) the 
second derivative is zero.


dy

___
dx

 5   d___
dx

 (x 4 2 4x 3) 5 4x 3 2 12x 2 

  ⇒   
d 2y

___ 
dx 2

   5   d___
dx

 (4x 3 2 12x 2) 5 12x 2 2 24x  5 12x (x 2 2)

Setting   
d 2y

___ 
dx 2

   5 0, it follows that inflexion points may occur at t 5 0 and 

t 5 2. These two values divide the domain of the function into three 
intervals that we need to test. Let’s choose t 5 21, t 5 1 and t 5 3 as our 

test values. At t 5 21,   
d 2y

___ 
dx 2

   5 36 . 0; at t 5 1,   
d 2y

___ 
dx 2

   5 212 , 0; and at 

t 5 3,   
d 2y

___ 
dx 2

   5 36 . 0. These results can be organized in a sign chart, 

illustrating that the graph of y 5 x 4 2 4x 3 is concave up for the open 
intervals (2`, 0) and (2, `), and concave down on the open interval (0, 2).

At t 5 0, y 5 0 and at t 5 2, y 5 24 2 4(2)3 5 216. Therefore, (0, 0) and 
(2, 216) are inflexion points because it is at these points the concavity of 
the graph changes.

The graph of the function (Figure 13.22) from Example 19 reveals two 
different types of inflexion points. The slope of the curve at (0, 0) is zero 
– i.e. it is a stationary point. The slope of the curve at the other inflexion 
point, (2, 216), is negative. 

For either type of inflexion point, the graph crosses its tangent line at the 
point of inflexion, as shown in Figure 13.23. 

The fact that the second derivative of a function is zero at a certain point 
does not guarantee that an inflexion point exists at the point. 
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The functions y 5 x 3 and y 5 x 4 will serve to illustrate that   
d 2y

___ 
dx 2

   5 0 is a 

necessary but not sufficient condition for the existence of an inflexion point.

• For y 5 x 3:   
dy

___
dx

 5   d___
dx

 (x 3) 5 3x 2 ⇒   
d 2y

___ 
dx 2

   5   d___
dx

 (3x 2) 5 6x ⇒ 
d 2y

___ 
dx 2

   5 0

atx 5 0. We can conclude from this that there may be an inflexion point

at x 5 0. We need to investigate further by checking to see if   
d 2y

___ 
dx 2

   changes 

sign at x 5 0. At x 5 21,   
d 2y

___ 
dx 2

   5 26 and at x 5 1,   
d 2y

___ 
dx 2

   5 6. 

Thus, there is an inflexion point at x 5 0 (confirmed by graph) because 
the second derivative changes sign at x 5 0.

• For y 5 x 4:   
dy

___
dx

 5   d___
dx

 (x 4) 5 4x 3 ⇒   
d 2y

___ 
dx 2

   5   d___
dx

 (4x 3) 5 12x2 ⇒ 
d 2y

___ 
dx 2

   5 0 

atx 5 0. Again, we need to see if   
d 2y

___ 
dx 2

   changes sign at x 5 0. 

At x 5 21,   
d 2y

___ 
dx 2

   5 12 and at x 5 1,   
d 2y

___ 
dx 2

   5 12. Thus, there is no inflexion 

point at x 5 0 (confirmed by graph) because the second derivative does 
not change sign at x 5 0. 

The second derivative test
Earlier in this section, we developed the first derivative test for locating 
maxima and minima of a function. Instead of using the first derivative 
to check whether a function changes from increasing to decreasing 
(maximum) or decreasing to increasing (minimum) at a stationary point, 
we can simply evaluate the second derivative at the stationary point. If the 
graph is concave up at the stationary point then it will be a minimum, and 
if it is concave down then it will be a maximum. If the second derivative is 
zero at a stationary point (as for y 5 x 3 and y 5 x 4), no conclusion can be 
made and we need to go back to the first derivative test. Using the second 
derivative in this way is a very efficient method for telling us whether a 
stationary point is a relative maximum or minimum.
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Example 20 

Find any relative extrema for f (x) 5 3x 5 2 25x 3 1 60x 1 20.

Solution

The implied domain of f  is all real numbers. Solve f 9(x) 5 0 to obtain 
possible extrema. 

f 9(x) 5  15x 4 2 75x 2 1 60 5 0
15(x 4 2 5x 2 1 4) 5 0
15(x 2 2 4)(x 2 2 1) 5 0
15(x 1 2)(x 2 2)(x 1 1)(x 2 1) 5 0

Therefore, f  has four stationary points: x 5 22, x 5 21, x 5 1 and x 5 2.

Applying the second derivative test:

f  0(x) 5  60x 3 2 150x 5 30x (2x 2 2 5)
f  0(22) 5 2180 , 0 ⇒ f  has a relative maximum at x 5 22
f  0(21) 5 90 . 0 ⇒ f  has a relative minimum at x 5 21
f  0(1) 5 290 , 0 ⇒ f  has a relative maximum at x 5 1
f  0(2) 5 180 . 0 ⇒ f  has a relative minimum at x 5 2

In questions 1–3, find the vertex of the parabola using differentiation.

 1 y 5 x 2 2 2x 2 6  2 y 5 4x 2 1 12x 1 17  3 y 5 2x 2 1 6x 2 7

For questions 4–7, a) find the derivative, f 9(x), b) indicate the interval(s) for which f (x) 
is increasing, and c) the interval(s) for which f (x) is decreasing.

 4 y 5 x 2 2 5x 1 6  5 y 5 7 2 4x 2 3x 2

 6 y 5   1 _ 3   x 3 2 x  7 y 5 x 4 2 4x 3

For questions 8–13: 
a) find the coordinates of any stationary points for the graph of the equation
b) state, with reasoning, whether each stationary point is a minimum, maximum or 

neither
c) sketch a graph of the equation and indicate the coordinates of each stationary 

point on the graph.

 8 y 5 2x 3 1 3x 2 2 72x 1 5  9 y 5   1 _ 6   x3 2 5

10 y 5 x (x 2 3)2 11 y 5 x 4 2 2x 3 2 5x 2 1 6

12 y 5 x 3 2 2x 2 2 7x 1 10 13 y 5 x 2  √
__

 x  
14 An object moves along a line such that its displacement, s metres, from the 

origin O is given by s (t) 5 t 3 2 4t 2 1 t.
a) Find expressions for the object’s velocity and acceleration in terms of t.
b) For the interval 21 < t < 3, sketch the displacement-time, velocity-time, 

and acceleration-time graphs on separate sets of axes, vertically aligned as in 
Figure 13.21.

c) For the interval 21 < t < 3, find the time at which the displacement is a 
maximum and find its value.

d) For the interval 21 < t < 3, find the time at which the velocity is a minimum 
and find its value.

e) In words, accurately describe the motion of the object during the interval  
21 < t < 3.

Exercise 13.3
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For each function f (x) in questions 15–20, find any relative extrema and points of 
inflexion. State the coordinates of any such points. Use your GDC to assist you in 
sketching the function.

15 f (x) 5 x 3 2 12x

16 f (x) 5   1 _ 4   x 4 2 2x 2

17 f (x) 5 x 1   4 __ x  

18 y 5 x 2 2   1 __ x  

19 f (x) 5 23x 5 1 5x 3

20 f (x) 5 3x 4 2 4x 3 2 12x 2 1 5

21 An object moves along a line such that its displacement, s metres, from a fixed 
point P is given by s (t) 5 t (t 2 3)(8t 2 9).
a) Find the initial velocity and initial acceleration of the object.
b) Find the velocity and acceleration of the object at t 5 3 seconds.
c) Find for what values of t the object changes direction. What significance do 

these times have in connection to the displacement of the object?
d) Find for what value of t the object’s velocity is a minimum. What significance 

does this time have in connection to the acceleration of the object?

22 The delivery cost per tonne of bananas, D (in thousands of dollars), when x tonnes

 of bananas are shipped is given by D 5 3x 1   100 ____ x   , x . 0. Find the value of x for 

 which the delivery cost per tonne of bananas is a minimum, and find the value 
of the minimum delivery cost. Explain why this cost is a minimum rather than a 
maximum.

23 The curve y 5 x 4 1 ax 2 1 bx 1 c passes through the point (21, 28) and at that 

point   
d 2y

 ___ 
dx 2

   5   
dy

 ___ 
dx   5 6. Find the values of a, b and c and sketch the curve.

24 Find any maxima, minima or stationary points of inflexion of the function 

f (x) 5   x 3 1 3x 2 1 __________ x 2
  , stating, with explanation, the nature of each point. 

Sketch the curve, indicating clearly what happens as x → 6`.

25 For each of the five functions graphed below sketch its derivative on a separate 
pair of axes. Do not use your GDC. It is helpful to use the result from question 25 
in Exercise 13.2 – that the derivative of an even function is odd and the derivative 
of an odd function is even.
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In questions 26 and 27, the graph of the derivative of a function f is shown.

a) On what intervals is f increasing or decreasing?
b) At what value(s) of x does f have a local maximum or minimum?

26 

27 

28 The graph of the second derivative f 0 of a function f is shown. Approximate 
the x-coordinates of the inflexion points of f. Give reasons for your answers.

29 Sketch a continuous curve y 5 f (x) with the following properties. Label 
coordinates where possible.

f (22) 5 8 f(0) 5 4 f (2) 5 0 f 9(2) 5 f 9(22) 5 0

f 9(x) . 0 for |x| . 2 f 9(x) , 0 for |x| , 2 f 0(x) , 0 for x , 0 f 0(x) . 0 for x . 0

30 An object moves along a horizontal line such that its displacement, s metres, 
from its starting position at any time t > 0 is given by the function 
s(t) 5 22t3 1 15t2 2 24t. The positive direction is to the right.

a) Find the intervals of time when the object is moving to the right, and the 
intervals when it is moving to the left.

b) Find the (i) initial velocity, and (ii) initial acceleration of the object.

c) Find the (i) maximum displacement, and (ii) maximum velocity for the interval 
0 < t < 5.

d) When is the object’s acceleration equal to zero? Describe the motion of the 
object at this time.

31 a) Use your GDC to approximate to three significant figures the maximum and 
minimum values of the function f (x) 5 x 2   √

__
 2   sin x in the interval 0 < x < 2p.

b) Find f 9(x) and find the exact minimum and maximum values for f (x) in the 
interval 0 < x < 2p.

2 4 6

y y � f �(x)

O x

2 4 6

y

y � f �(x)

O x

2 4 6 8

y
y � f �(x)

O x
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 13.4 Tangents and normals

In many areas of mathematics and physics, it is useful to have an accurate 
description of a line that is tangent or normal (perpendicular) to a curve. 
The most complete mathematical description we can obtain is to find 
the algebraic equation of such lines. In this chapter, much of our work 
has been in connection to the slopes of tangent lines, so this will be our 
starting point.

Finding equations of tangents
We now make use of the basic differentiation rules that we established 
earlier to determine the equation of lines that are tangent to a curve at a 
point. The first example shows how we can approximate the square root of 
a number quite accurately without a calculator by making use of a tangent 
line.

Example 21 

a) Find the equation of the line tangent to y 5   √
__

 x at x 5 9.
b) Use this tangent line to approximate   √

___
 10  .

Solution

a) We can find the equation of any line if we know its slope and a point it 
passes through. Since y 5 3 when x 5 9, the point of tangency is (9, 3). 
We differentiate to find the slope of the curve at x 5 9, thus giving us 
the slope of the tangent line.


dy

___
dx

 5   d___
dx

 (  √
__

 x) 5   d___
dx

 ( x   
1
 _ 2   ) 5   1 __ 

2
    x  2 1 _ 2    5   1 ____ 

2  √
__

 x


At x 5 9:   
dy

___
dx

 5   1 ____ 
2  √

__
 9  
   5   1 __ 

6
   ⇒  The slope of the curve and 

tangent line at x 5 9 is   1 _ 6  .

Now that we have a point and a slope for the line we can substitute in 
the point-slope form for the equation of a line.

y 2 3 5   1 _ 6   (x 2 9) ⇒ y 5   1 _ 6   x 1   3 _ 2  

The equation of the line tangent to y 5  √
__

 x at x 5 9 is y 5   x__ 
6

    1   3 __ 
2

  .

b) For values of x near 9, y 5   √
__

 x    x__ 
6

    1   3 __ 
2

  .

 3.1 
_

 6 
  √

___
 10      10 ___ 

6
   1   3 __ 

2
   5   19 ___ 

6
      6 ) 

_____

 19.00  

The actual value of   √
___

 10   to 4 significant figures is 3.162. Our 
approximation expressed to 3 significant figures is 3.167. The 
percentage error is less than 0.2%.
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The graphs of y 5  √
__

 x and its tangent at x 5 9, y 5   x__ 
6

   1   3 __ 
2

  , in Figure 13.24 

illustrate that the tangent is a very good approximation to the curve in the 
interval 5 , x , 13 centred on the point of tangency (9, 3).

Example 22 

Find the equation of the tangent to f (x) 5 x 1   1 __ x at the point  (   1 __ 
2

  ,   5 __ 
2

   ) .

Solution

f (x) 5 x 1   1 __ x 5 x 1 x 21

f 9(x) 5 1 2 x 22 5 1 2   1 __ 
x 2  

When x 5   1 __ 
2

  , f 9( 1 __ 
2

   )  5 1 2   1 ____ 
 (   1 __ 
2

   ) 2
   5 23.  Hence, the slope of the tangent is 23.

y 2   5 __ 
2

   5 23  ( x 2   1 __ 
2

   )  ⇒ y 5 23x 1   3 __ 
2

   1   5 __ 
2

   ⇒ y 5 23x 1 4

The equation of the line tangent to f (x) 5 x 1   1 __ x at x 5   1 __ 
2

   is y 5 23x 1 4.

Example 23 

Consider the function g (x) 5 x 2 (x 2 1).
a) Find the two points on the graph of g at which the slope of the curve is 8.

b) Find the equations of the tangents at both of these points.

Solution

a) In order to differentiate by applying the power rule term-by-term, we 
first need to write the equation for g in expanded form: 
g (x) 5 x 2 (x 2 1) 5 x 3 2 x 2

g 9(x) 5   d___
dx

 (x 3 2 x 2) 5 3x 2 2 2x

g 9(x) 5 3x 2 2 2x 5 8 ⇒ 3x 2 2 2x 2 8 5 0

(3x 1 4)(x 2 2) 5 0 ⇒ x 5 2   4 __ 
3

   or x 5 2

g( 2   4 __ 
3

   )  5  ( 2   4 __ 
3

   ) 
3

 2  ( 2   4 __ 
3

   ) 
2

 5 2   112 ___ 
27

   and g (2) 5 23 2 22 5 4

Thus, the slope of the curve is equal to 8 at the points  ( 2   4 __ 
3

  , 2   112 ___ 
27

   )  and
(2, 4).
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Finding the tangent to a 
curve was a challenge that 
motivated many of the initial 
developments of calculus in 
the 17th century. In one of 
his books on mathematics, 
Descartes wrote the following 
about the problem of how to 
find a tangent to a curve:

And I dare say that this is 
not only the most useful 
and most general problem 
in geometry that I know, 
but even that I have ever 
desired to know.
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b) Tangent at  ( 2   4 __ 
3

  , 2   112 ___ 
27

   ) :

y 2  ( 2   112 ___ 
27

   )  5 8  [ x 2( 2   4 __ 
3

   )  ]  ⇒ y 5 8x 1   32 ___ 
3

   2   112 ___ 
27

  

  ⇒ y 5 8x 1   176 ___ 
27

  

Therefore, the equation of the tangent at  ( 2   4 __ 
3

  , 2   112 ___ 
27

   )  is y 5 8x 1   176  ____ 
27

   .

Tangent at (2, 4):

y 2 4 5 8(x 2 2) ⇒ y 5 8x 2 16 1 4 ⇒ y 5 8x 2 12

Therefore, the equation of the tangent at (2, 4) is y 5 8x 2 12.

Figure 13.25 shows the results for Example 23 – the graph of the function g 
and the two tangent lines to the graph of the function that have a slope of 
8. Note that the scales on the x- and y-axes are not equal which causes the 
slope of the tangent lines to appear less than 8 for this particular graph.

The normal to a curve at a point
Another line we often need to find is the line that is ‘perpendicular’ to a 
curve at a certain point, which we define to be the line that is perpendicular 
to the tangent at that point. In this particular context, we apply the adjective 
‘normal’ rather than ‘perpendicular’ to denote that two lines are at right 
angles to one another.

A normal to a graph of a function at 
a point is the line through the point 
that is at a right angle to the tangent 
at the point. In other words, the 
tangent and normal to a curve at a 
certain point are perpendicular. 
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Recall that two perpendicular 
lines have slopes that are 
opposite reciprocals. If the 
slopes of two perpendicular 
lines are m1 and m2, then 

m1 5 21 ___ 
m2

   or m1m2 5 21. 

The exception is if one of the 
lines is horizontal (slope is zero) 
and the other is vertical (slope 
is undefined).

Figure 13.25
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Example 24 

Find the equation of the normal to the graph of y 5 2x 2 2 6x 1 3 at the 
point (1, 21).

Solution


dy

___
dx

 5   d___
dx

 (2x 2 2 6x 1 3) 5 4x 2 6

Slope of tangent at (1, 21) is 4(1) 2 6 5 22. Hence, slope of normal is 1 1 _ 2  .

Equation of normal: y 2 (21) 5   1 _ 2   (x 2 1) ⇒ y 5   1 _ 2   x 2   3 _ 2  

Figure 13.26 shows the results for Example 24 with the curve at both its 
tangent and normal at the point (1, 21). Please be aware that if you graph 
a function with its tangent and normal at a certain point, the normal will 
only appear perpendicular if the scales on both the x- and y-axes are equal. 
Regardless of whether the scales are equal or not, the tangent will always 
appear tangent to the curve.

Example 25 

Consider the parabola with equation y 5   1 _ 4   x 2.

a) Find the equation of the normals at the points (22, 1) and (24, 4).
b) Show that the point of intersection of these two normals lies on the 

parabola.

Solution

a)   
dy

___
dx

 5   1 __ 
2

   x

Slope of tangent at (22, 1) is   1 _ 2   (22) 5 21, so the slope of the normal 
at that point is 11.

Then equation of normal at (22, 1) is: y 2 1 5 x 2 (22) ⇒ y 5 x 1 3

Slope of tangent at (24, 4) is   1 _ 2   (24) 5 22, so the slope of the normal 

at that point is   1 _ 2  .

Then equation of normal at (24, 4) is: y 2 4 5   1 _ 2   [x 2 (24)] 

⇒ y 5   1 _ 2   x 1 6
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Figure 13.26
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b) Set the equations of the two normals equal to each other to find their 
intersection.

x 1 3 5   1 _ 2   x 1 6 ⇒   1 _ 2   x 5 3 ⇒ x 5 6 then y 5 9 

⇒ intersection point is (6, 9)

Substitute the coordinates of the points into the equation for the 
parabola.

y 5   1 _ 4   x 2 ⇒ 9 5   1 _ 4   (6)2 ⇒ 9 5   1 _ 4    36 ⇒ 9 5 9

This confirms that the intersection point, (6, 9), of the normals is also a 
point on the parabola.

1 Find an equation of the tangent line to the graph of the equation at the 
indicated value of x.

a) y 5 x 2 1 2x 1 1 x 5 23 

b) y 5 x 3 1 x 2 x 5 2   2 __ 3  

c) y 5 3x 2 2 x 1 1 x 5 0

d) y 5 2x 1   1 __ x   x 5   1 _ 2  

 2 Find the equations of the normal to the functions in question 1 at the indicated 
value of x.

 3 Find the equations of the lines tangent to the curve y 5 x 3 2 3x 2 1 2x at any 
point where the curve intersects the x-axis.

 4 Find the equation of the tangent to the curve y 5 x 2 2 2x  that is perpendicular 
to the line x 2 2y 5 1.

 5 Using your GDC for assistance, make accurate sketches of the curves 
y 5 x 2 2 6x 1 20 and y 5 x 3 2 3x 2 2 x on the same set of axes. The two curves 
have the same slope at an integer value for x somewhere in the interval 0 < x <   3 _ 2  . 
a) Find this value of x. 
b) Find the equation for the line tangent to each curve at this value of x.

 6 Find the equation of the normal to the curve y 5 x 2 1 4x 2 2 at the point 
where x 5 23. Find the coordinates of the other point where this normal 
intersects the curve again.

 7 Consider the function g (x) 5   1 2 x 3 ______ x 4  . Find the equation of both the tangent and 

the normal to the graph of g at the point (1, 0).

 8 The normal to the curve y 5 a x    
1
 _ 2    1 bx at the point where x 5 1 has a slope of 1 

and intersects the y-axis at (0, 24). Find the value of a and the value of b.

 9 a) Find the equation of the tangent to the function f (x) 5 x 3 1   1 _ 2   x 2 1 1 at the 

point  ( 21,   1 _ 2   ) . 

b) Find the coordinates of another point on the graph of f where the tangent is 
parallel to the tangent found in a).

10 Find the equation of both the tangent and the normal to the curve 
y 5   √

__
 x   (1 2   √

__
 x   ) at the point where x 5 4.

Exercise 13.4
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11 Consider the function f (x) 5 (1 1 x)2(5 2 x).

a) Show that the line tangent to the graph of f where x 5 1 does not intersect 
the graph of the function again.

b) Also show that the tangent line at (0, 5) intersects the graph of f at a turning 
point.

c) Sketch the graph of f and the two tangents from a) and b).

12 Find equations of both lines through the point (2, 23) that are tangent to the 
parabola y 5 x 2 1 x.

13 Find all tangent lines through the origin to the graph of y 5 1 1 (x 2 1)2.

14 a) Find the equation of the tangent line to y 5  3 √
__

 x   at x 5 8.

b) Use the equation of this tangent line to approximate  
3
 √

__
 9   to three significant 

figures.

15 Find the equation of the tangent line for f (x) 5   1 ___   √
__

 x     at x 5 a.

16 The tangent to the graph of y 5 x 3 at a point P intersects the curve again at 
another point Q.
Find the coordinates of Q in terms of the coordinates of P.

17 Two circles of radius r are tangent to each other. Two lines pass through the 
centre of one circle and are tangent to the other circle at points A and B as 
shown in the diagram. Find an expression for the distance between A and B.

18 Prove that there is no line through the point (1, 2) that is tangent to the curve 
 y 5 4 2 x2.

A

B

r

r

  1	 The	function	f	is	defined	as	f	(x)	5	x	2.
a)	 Find	the	gradient	(slope)	of	f	at	the	point	P,	where	x	5	1.5.
b)	 Find	an	equation	for	the	tangent	to	f	at	the	point	P.
c)	 Draw	a	diagram	to	show	clearly	the	graph	of	f	and	the	tangent	at	P.
d)	 The	tangent	of	part	b)	intersects	the	x-axis	at	the	point	Q	and	the	y-axis	at	the	

point	R.	Find	the	coordinates	of	Q	and	R.
e)	 Verify	that	Q	is	the	midpoint	of	[PR	].
f)	 Find	an	equation,	in	terms	of	a,	for	the	tangent	to	f	at	the	point	S	(a,	a	2),	a		0.
g)	 The	tangent	of	part	f)	intersects	the	x-axis	at	the	point	T	and	the	y-axis	at	the	point	

U.	Find	the	coordinates	of	T	and	U.
h)	 Prove	that,	whatever	the	value	of	a,	T	is	the	midpoint	of	SU.

Practice questions
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  2	 The	curve	with	equation	y	5	Ax	1	B	1			C	__	x 	,	x	[	핉,	x		0,	has	a	minimum	at	P	(1,	4)	
and	a	maximum	at	Q	(21,	0).	Find	the	value	of	each	of	the	constants	A,	B	and	C.

  3	 Differentiate:
a)	 x	2	(2	2	3x	3)

b)	 		1	__	x 	

  4	 Consider	the	function	f	(x)	5			8	__	x 		1	2x,	 x	.	0.

a)	 Solve	the	equation	f	9(x)	5	0.	Show	that	the	graph	of	f	has	a	turning	point	at	(2,	8).
b)	 Find	the	equations	of	the	asymptotes	to	the	graph	of	f,	and	hence	sketch	the	graph.

  5	 Find	the	coordinates	of	the	stationary	point	on	the	curve	with	equation	y	5	4x	2	1			1	__	x 	.

  6	 The	curve	y	5	ax	3	2	2x	2	2	x	1	7	has	a	gradient	(slope)	of	3	at	the	point	where	x	5	2.

	 Determine	the	value	of	a.

  7	 If	f(2)	5	3	and	f	9(2)	5	5,	find	an	equation	of	a)	the	line	tangent	to	the	graph	of	f	at	
x	5	2,	and	b)	the	line	normal	to	the	graph	of	f	at	x	5	2.

  8	 The	function	g	(x)	is	defined	for	23	<	x	<	3.	The	behaviour	of	g	9(x	)	and	g	0(x	)	is	given	
in	the	tables	below.

x 23	,	x	,	22 22 22	,	x	,	1 1 1	,	x	,	3

g	9(x) negative 0 positive 0 negative

x 23	,	x	,	2   1 _	2 	 2   1 _	2 	 2   1 _	2 		,	x	,	3

g	0(x) positive 0 negative

Use	the	information	above	to	answer	the	following.	In	each	case,	justify	your	answer.
a)	 Write	down	the	value	of	x	for	which	g	has	a	maximum.
b)	 On	which	intervals	is	the	value	of	g	decreasing?
c)	 Write	down	the	value	of	x	for	which	the	graph	of	g	has	a	point	of	inflexion.
d)	 Given	that	g	(23)	5	0,	sketch	the	graph	of	g.	On	the	sketch,	clearly	indicate	the	

position	of	the	maximum	point,	the	minimum	point	and	the	point	of	inflexion.

  9	 Given	the	function	f	(x)	5	x	2	2	3bx	1	(c	1	2),	determine	the	values	of	b	and	c	such	
that	f(1)	5	0	and	f	9(3)	5	0.

10	 Figure 1	shows	the	graphs	of	the	functions	f1,	f2,	f3,	f4.	Figure 2	includes	the	graphs	of	
the	derivatives	of	the	functions	shown	in	Figure 1.

Figure 1

x

y

f1

O

x

y

f2

O

x

y

f3

O

x

y

f4

O
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Figure 2

a)  b)

c)  d)

e)

Complete	the	table	below	by	matching	each	function	with	its	derivative.

Function Derivative diagram

f1

f2

f3

f4

11	 Consider	the	function	f	(x)	5	1	1	sin	x.

a)	 Find	the	average	rate	of	change	of	f	from	x	5	0	to	x	5			p__	
2
		.

b)	 Find	the	instantaneous	rate	of	change	of	f	at	x	5			p__	
4
		.

c)	 At	what	value	of	x	in	the	interval	0	,	x	,			p__	
2
			is	the	instantaneous	rate	of	change

	 of	f	equal	to	the	average	rate	of	change	of	f	from	x	5	0	to	x	5			p__	
2
			(answer	to	part	

a))?

12	 Consider	the	function	y	5			3x	2	2	______	x  	.	The	graph	of	this	function	has	a	vertical	and	a		
horizontal	asymptote.
a)	 Write	down	the	equation	of	

  (i)	 the	vertical	asymptote
  (ii)	 the	horizontal	asymptote.

b)	 Find			
dy

	___	
dx 	.

c)	 Indicate	the	intervals	for	which	the	curve	is	increasing	or	decreasing.
d)	 How	many	stationary	points	does	the	curve	have?	Explain	using	your	result	to	b).

x

y

O
x

y

O

x

y

O x

y

O

x

y

O
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13	 Show	that	there	are	two	points	at	which	the	function	h(x)	5	2x	2	2	x	4	has	a	maximum	
value,	and	one	point	at	which	h	has	a	minimum	value.	Find	the	coordinates	of	these	
three	points,	indicating	whether	it	is	a	maximum	or	minimum.

14	 The	normal	to	the	curve	y	5		x			
1
	_	2				1		x			

1
	_	3				at	the	point	(1,	2)	meets	the	axes	at	(a,	0)	and	

(0,	b).	
	 Find	a	and	b.

15	 The	displacement,	s	metres,	of	a	car,	t	seconds	after	leaving	a	fixed	point	A,	is	given	by	
s(t)	5	10t	2			1	_	2			t	2.

a)	 Calculate	the	velocity	when	t	=	0.
b)	 Calculate	the	value	of	t	when	the	velocity	is	zero.
c)	 Calculate	the	displacement	of	the	car	from	A	when	the	velocity	is	zero.

16	 A	ball	is	thrown	vertically	upwards	from	ground	level	such	that	its	height	h	metres	at	
t	seconds	is	given	by	h	5	14t	2	4.9t	2.	
a)	 Write	expressions	for	the	ball’s	velocity	and	acceleration.
b)	 Find	the	maximum	height	the	ball	reaches	and	the	time	it	takes	to	reach	the	

maximum.
c)	 At	the	moment	the	ball	reaches	its	maximum	height,	what	is	the	ball’s	velocity	and	

acceleration?

17	 Find	the	exact	coordinates	of	the	inflexion	point	on	the	curve	y	5	x3	1	12x 2	2	x	2	12.

18	 Consider	the	function	f	(x)	5	2	cos	x	2	3.	At	the	point	on	the	curve	where	x	5			p__	
3
		,	find:

a)	 the	equation	of	the	line	tangent	to	f
b)	 the	equation	of	the	line	normal	to	f.	
	 Express	both	equations	exactly.

19	 A	manufacturer	produces	closed	cylindrical	cans	of	radius	r	cm	and	height	h	cm.	Each	
can	has	a	total	surface	area	of	54p	cm2.
a)	 Solve	for	h	in	terms	of	r,	and	hence	find	an	expression	for	the	volume,	V	cm3,	of	

each	can	in	terms	of	r.
b)	 Find	the	value	of	r	for	which	the	cans	have	their	maximum	possible	volume.

20	 The	curve	y	5	ax2	1	bx	1	c	has	a	maximum	point	at	(2,	18)	and	passes	through	the	
point	(0,	10).	Find	a,	b	and	c.

21	 For	the	function	f	(x)	5			1	_	2			x 2	2	5x	1	3,	find:
a)	 the	equation	of	the	tangent	line	at	x	5	22
b)	 the	equation	of	the	normal	line	at	x	5	22.

22	 Consider	the	function	f	(x)	5	x 4	2	x3.
a)	 Find	the	coordinates	of	any	maximum	or	minimum	points.	Identify	each	as	relative	

or	absolute.
b)	 State	the	domain	and	range	of	f.
c)	 Find	the	coordinates	of	any	inflexion	point(s).
d)	 Sketch	the	function	clearly	indicating	any	maximum,	minimum	or	inflexion	points.

23	 Evaluate	each	limit.

a)	 		lim				
x → ̀

				2	2	3x	1	5x 2		___________	
8	2	3x 2	 		 b)	 		lim				

x → 0
						
√

_____
	x	1	4			2	2	__________	x   

c)	 		lim				
x → 1

				x
3	2	1	______	x	2	1

			 d)	 		lim				
h → 0

				
		√

__________

	(x	1	h)	1	2			2			√
_____

	x	1	2		
		___________________	

h
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24	 Find	the	derivative	f	9(x)	for	each	function.

a)	 f	(x)	5			x 2	2	4x _______	
		√

__
	x     	 b)	 f	(x)	5	x3	2	3	sin	x

c)	 f	(x)	5			1	__	x  	1			x __	
2
			 d)	 f	(x)	5			 7	____	

3x13		

25	 A	point	(	p,	q)	is	on	the	graph	of	y	5	x3	1	x2	2	9x	2	9,	and	the	line	tangent	to	the	
graph	at	(	p,	q)	passes	through	the	point	(4,	21).	Find	p	and	q.

26	 For	what	values	of	c,	such	that	c	>	0,	is	the	line	y	5	2			1	__	12			x	1	c	normal	to	the	graph	of	
y	5	x 3	1			1	_	3		?

27	 Find	the	points	on	the	curve	y	5			1	_	3			x 3	2	x	where	the	tangent	line	is	parallel	to	the	line	
y	5	3x.

28	 At	what	point	does	the	line	that	is	normal	to	the	graph	of	y	5	x	2	x2	at	the	point	
	 (1,	0)	intersect	the	graph	of	the	curve	a	second	time?

29	 If	f	(x)	5			√
_____

	x	1	2		,	find	f	9(x)	by	first	principles.

30	 An	object	moves	along	a	line	according	to	the	position	function	
	 s	(t	)	5	t	3	2	9t	2	1	24t.	Find	the	positions	of	the	object	when	
	 a)	 its	velocity	is	zero	
	 b)	 its	acceleration	is	zero.

31	 A	particle	moves	along	a	straight	line	in	the	time	interval	0	<	t	<	2p	such	that	its	
displacement	from	the	origin	O	is	s	metres	given	by	the	function	s	5	t	1	sin	t.
a)	 Find	the	value(s)	of	t	in	the	interval	0	<	t	<	2p	when	the	particle’s	direction	

changes.
b)	 Show	that	the	particle	always	remains	on	the	same	side	of	the	origin	O.
c)	 Find	the	value(s)	of	t	in	the	interval	0	<	t	<	2p	when	the	particle’s	acceleration	is	

zero.
d)	 Sketch	a	graph	of	the	particle’s	displacement	from	O	for	0	<	t	<	2p,	and	state	the	

maximum	value	of	s	in	this	interval.

32	 The	curve	whose	equation	is	y	5	ax3	1	bx2	1	c		x	1	d	has	a	point	of	inflexion	at	
	 (21,	4),	a	turning	point	when	x	5	2,	and	it	passes	through	the	point	(3,	27).	Find	the	

values	of	a,	b,	c	and	d,	and	the	y-coordinate	of	the	turning	point.

33	 Find	the	stationary	values	of	the	function	f	(x)	5	1	2			9	__	x2			1			18	___	x 4			and	determine	their	
nature.

34	 a)	 Find	the	equation	of	the	tangent	to	the	curve	y	5			1	__	x  	at	the	point	(1,	1).

b)	 Find	the	equation	of	the	tangent	to	the	curve	y	5	cos	x	at	the	point		( 		p__	
2
		,	0	)	.

c)	 Deduce	that			1	__	x  	>	cos	x	for	0	<	x	<			p__	
2
		.

35	 Show	that	there	is	just	one	tangent	to	the	curve	y	5	x3	2	x	1	2	that	passes	through	
the	origin.
Find	its	equation	and	the	coordinates	of	the	point	of	tangency.

36	 The	displacement,	s	metres,	of	a	moving	body	B	from	a	fixed	point	O,	at	time	t	seconds,	
is	given	by	s	5	50t	2	10t	2	1	1000.

a)	 Find	the	velocity	of	B	in	m	s21.

b)	 Find	its	maximum	displacement	from	O.
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37	 The	diagram	shows	a	sketch	of	the	graph	of	y	5	f	9(x)	for	a	<	x	<	b.

On	the	grid	below,	which	has	the	same	scale	on	the	x-axis,	draw	a	sketch	of	the	graph	
of	y	5	f	(x)	for	a	<	x	<	b,	given	that	f	(0)	5	0	and	f	(x)	>	0	for	all	x.	On	your	graph	
you	should	clearly	indicate	any	minimum	or	maximum	points,	or	points	of	inflexion.

Questions	8,	10,	36	and	37	©	International	Baccalaureate	Organization
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15 Differential Calculus I-- I
-
-: 

Further Techniques 
and Applications

The primary purpose of the earlier chapter on calculus, Chapter 13, was to 
establish some fundamental concepts and techniques of differential calculus.  
Chapter 13 also introduced some applications involving the differentiation 
of functions: finding maxima and minima of a function; kinematic 
problems involving displacement, velocity and acceleration; and finding 
equations of tangents and normals.  The focus of this chapter is to expand 
our set of differentiation rules and techniques and to deepen and extend 
the applications introduced in Chapter 13 – particularly using methods of 
finding extrema in the context of finding an ‘optimum’ solution to a problem 
and solving problems involving more than one rate of change.  We start by 
investigating the derivatives of some important functions.

Introduction

Assessment statements
6.2	 Derivative	of	x n	(n ∈ 핈),	sin	x,	cos	x,	tan	x,	e x	and	ln	x.
	 Differentiation	of	a	sum	and	a	real	multiple	of	a	function.
	 The	chain	rule	for	composite	functions.
	 Implicit	differentiation.
	 Related	rates	of	change.
	 The	product	and	quotient	rules.
	 Derivatives	of	sec	x,	csc	x,	cot	x,	ax,	loga x,	arcsin	x,	arccos	x	and	arctan	x.
6.3	 Optimization	problems.

It is not an exaggeration to consider Isaac Newton (1642–1727) the most influential person in the 
development of modern science and mathematics. Newton was educated at Cambridge University and 
later was a professor of mathematics there. When Newton entered Cambridge in 1661, he did not know 
much mathematics but he learned quickly by reading works of Euclid and Descartes and attending 
lectures of Isaac Barrow, the first professor of mathematics at Cambridge. Cambridge was closed in 1665 
and 1666 because of the Great Plague that swept through London and other parts of England. Studying 
and thinking on his own during these two years (and still not yet 25 years old), Newton discovered that 
white light can be decomposed into rays of different colours, how to represent functions using infinite 
series (including the binomial theorem), formulated the law of universal gravitation, and developed 
differential and integral calculus (several years before its independent discovery by Leibniz – see page 
707). These great discoveries were all published much later because of Newton’s fear of criticism and 
controversy. In 1687, Newton published his Principia Mathematica, one of the greatest scientific works ever written, in which he 
presented his version of calculus and applied it to investigate and explain a wide range of physical phenomena.

Newton’s intellectual interests were not restricted to physics and mathematics. He left behind many papers dealing with theology 
and alchemy (attempting to change ordinary metals into gold). He was also a successful Warden of the Royal Mint (overseeing 
the production of official coins) and held political office, representing Cambridge University in Parliament several times.
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 15.1 Derivatives of composite functions, 
products and quotients

Derivatives of composite functions: the chain 
rule

We know how to differentiate functions such as f (x) 5 x 3 1 2x 2 3 and 
g (x) 5  √

__
 x  , but how do we differentiate the composite function 

f (g (x)) 5  √
__________

 x 3 1 2x 2 3  ? The rule for computing the derivative of the 
composite of two functions, i.e. the ‘function of a function’, is called the 
chain rule. Because most functions that we encounter in applications are 
composites of other functions, it can be argued that the chain rule is the 
most important, and most widely used, rule of differentiation. 

Below are some examples of functions that we can differentiate with the 
rules that we have learned thus far in Chapter 13, and further examples of 
functions which are best differentiated with the chain rule.

Differentiate without the chain rule Differentiate with the chain rule

y 5 cos  x y 5 cos  2x

y 5 3x 2 1 5x x 5   √
________

 3x 2 1 5x  

y 5 sin  x y 5 sin 2 x

y 5   1 ___ 
3x 2

  y 5   1 _______ 
3x 2 1 x  

The chain rule says, in a very basic sense, that given two functions, 
the derivative of their composite is the product of their derivatives – 
remembering that a derivative is a rate of change of one quantity (variable) 
with respect to another quantity (variable). For example, the function 
y  5  8x 1 6 5 2(4x 1 3) is the composite of the functions y 5 2u and 
u  5  4x 1 3. Note that the function y is in terms of u, and the function u is 
in terms of x. How are the derivatives of these three functions related? 

Clearly,   
dy

 ___ 
dx

   5 8,   
dy

 ___ 
du

   5 2 and   du ___ 
dx

   5 4. Since 8 5 24, the derivatives relate 

such that   
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

  . In other words, rates of change multiply.

Again, if we think of derivatives as rates of change, the relationship 

  
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

   can be illustrated by a practical example. Consider the pair of 

levers in Figure 15.1 with lever endpoints U and U9 connected by a 
segment that can shrink and stretch but always remains horizontal. Hence, 
points U and U9 are always the same distance u from the ground.
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As point Y moves down, points U and U9 move up, and point X moves down 
but at a rate different from that of Y. Let dy, du and dx represent the change 
in distance from the ground for the points Y, U and X, respectively. Because 
YF1 5 6 and UF1 5 2, if point Y moves such that dy 5 3, then du 5 1. Since 
U9F2 5 4 and XF2 5 2, if point U9 moves so that du 5 2, then dx 5 1. 

Hence,   
dy

 ___ 
du

   5 3 and   du ___ 
dx

   5 2. 

Combining these two results, we can see that for every 6 units that Y’s 

distance changes, X’s distance will change 1 unit. That is,   
dy

 ___ 
dx

   5 6. 

Therefore, we can write   
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

   5 32 5 6. In other words, the rate 

of change of y with respect to x is the product of the rate of change of y 
with respect to u and the rate of change of u with respect to x.

Example 1 

The polynomial function y 5 16x 4 2 8x 2 1 1 5 (4x 2 2 1)2 is the 

composite of y 5 u 2 and u 5 4x 2 2 1. Use the chain rule to find   
dy

 ___ 
dx

  , the 

derivative of y with respect to x.

Solution

y 5 u 2 ⇒   
dy

 ___ 
du

   5 2u

u 5 4x 2 2 1 ⇒   du ___ 
dx

   5 8x

Applying the chain rule:   
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

    5 2u  8x

5 2(4x 2 2 1)8x
5 64x 3 2 16x

In this particular case, we could have differentiated the function in expanded 
form by differentiating term-by-term rather than differentiating the factored

form by the chain rule.   
dy

 ___ 
dx

   5   d ___ 
dx

   (16x 4 2 8x 2 1 1) 5 64x 3 2 16x;

X

Y
6 m

2 m4 m2 m

ground

F2

U� U
F1

x
u y

dy
dudx

X Y
6 m2 m4 m2 m

ground

F2 U� U F1

x u y

Figure 15.1 Two levers with 
horizontal connection between U9 
and U.

Figure 15.2 dx, du and dy 
represent the change in distance 
from the ground for X, U and Y.
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confirming the result above. It is not always easier to differentiate powers of 
polynomials by expanding and then differentiating term-by-term.  
For example, it is far better to find the derivative of y 5 (3x 1 5)8 by the 
chain rule.

In Section 2.2, we often wrote composite functions using nested function 
notation. For example, the notation f (g (x)) denotes a function composed 
of functions f and g such that g is the ‘inside’ function and f is the ‘outside’ 
function. For the composite function y 5 (4x 2 2 1)2 in Example 1, the 
‘inside’ function is g (x) 5 4x 2 2 1 and the ‘outside’ function is f (u) 5 u 2. 
Looking again at the solution for Example 1, we see that we can choose 
to express and work out the chain rule in function notation rather than 
Leibniz notation.

For y 5 f (g (x)) 5 (4x 2 2 1)2 and y 5 f (u) 5 u 2, u 5 g (x) 5 4x 2 2 1,

Leibniz notation Function notation

  
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

   5 2u  8x     d ___ 
dx

   [ f (g (x))] 5 f 9(u)g 9(x) 5 2u  8x

5 2(4x 2 2 1)8x 5 f  9(g (x))g9(x) 5 2(4x 2 2 1)8x

5 64x 3 2 16x   5 64x 3 2 16x

This leads us to formally state the chain rule in two different notations.

The chain rule
If y 5 f (u) is a function in terms of u and u 5 g (x) is a function in terms of x, the function 
y 5 f (g (x)) is differentiated as follows:

  
dy

 ___ 
dx   5   

dy
 ___ 

du
      du ___ 

dx   (Leibniz form)

or, equivalently,

  
dy

 ___ 
dx   5   d ___ 

dx   [ f (g (x))] 5 f 9(g (x))g9(x) (function notation form)

Let nu be the change in u corresponding to a change of nx in x, that 
is, nu 5 g (x 1 nx) 2 g (x). Then the corresponding change in y is 
ny 5 f (u 1 nu) 2 f (u). It would be tempting to try to prove the chain

rule by writing   
ny

 ___ 
nx

   5   
ny

 ___ 
nu

      
nu

 ___ 
nx

  , which is a true statement if none of the

denominators are zero. Recognizing that the definition of the derivative

f 9(x) 5   lim    
h  →  0

   
f (x 1 h) 2 f (x)

  _____________ 
h

   , is equivalent to   
dy

 ___ 
dx

   5   lim    
nx → 0

    
ny

 ___ 
nx

  , we could then

proceed as follows:

  lim    
nx → 0

    
ny

 ___ 
nx

   5   lim    
nx → 0

   (   ny
 ___ 

nu
      

nu
 ___ 

nx
   )  5   lim    

nx → 0
    
ny

 ___ 
nu

      lim    
nx → 0

    
nu

 ___ 
nx

  

  5   lim    
nu → 0

    
ny

 ___ 
nu

      lim    
nx → 0

    
nu

 ___ 
nx

   because if nx → 0 then nu → 0 

  5   
dy

 ___ 
du

      du ___ 
dx
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This would work as a proof if we knew that nu, the change in u, was 
non-zero – but we do not know this. It is possible that a small change in x 
could produce no change in u. Nonetheless, this reasoning does provide an 
intuitive justification relating the chain rule to the limit definition of the 
derivative. A properly rigorous proof can be constructed with a different 
approach, but we will not present it here.

The chain rule needs to be applied carefully. Consider the function 

notation form for the chain rule   d ___ 
dx

   [ f (g (x))] 5 f 9(g (x))g9(x). Although it 

is the product of two derivatives, it is important to point out that the first 
derivative involves the function f differentiated at g (x) and the second is 
function g differentiated at x. The chain rule written in Leibniz form, 

  
dy

 ___ 
dx

   5   
dy

 ___ 
du

      du ___ 
dx

  , is easily remembered because it appears to be an obvious 

statement about fractions – but, they are not fractions. The expressions 

  
dy

 ___ 
dx

  ,   
dy

 ___ 
du

   and   du ___ 
dx

   are derivatives or, more precisely, limits and although du 

and dx essentially represent very small changes in the variables u and x, we 
cannot guarantee that they are non-zero.

The function notation form of the chain rule offers a very useful way of 
saying the rule ‘in words’, and, thus, a very useful structure for applying it.

f is ‘outside’ function g is ‘inside’ function

 
  
dy

 ___ 
dx

   5   d ___ 
dx

   [ f (g (x))] 5 f 9(g (x))g9(x) 
 

 
   derivative of ‘outside’ function                                                                

with ‘inside’ function unchanged
   3 derivative of ‘inside’ function

The chain rule in words:

 (   derivative of                        
composite

   )  5  (   derivative of ‘outside’ function                                                                
with ‘inside’ function unchanged

   )  3  (   derivative of                                  
‘inside’ function

   ) 

Although this is taking some liberties with mathematical language, 
the mathematical interpretation of the phrase “with ‘inside’ function 
unchanged” is that the derivative of the ‘outside’ function f is evaluated at 
g (x), the ‘inside’ function.

 Hint: The chain rule is our most 
important rule of differentiation. 
It is an indispensable tool in 
differential calculus. Forgetting to 
apply the chain rule when it needs 
to be applied, or by applying it 
improperly, is a common source of 
errors in calculus computations. It is 
important to understand it, practise 
it and master it.

The chain rule acquired its name because we use it to take derivatives of composites 
of functions by ‘chaining’ together their derivatives. A function could be the 
composite of more than two functions. If a function were the composite of three 
functions, we would take the product of three derivatives ‘chained’ together. For 
example, if y 5 f (u), u 5 g (v) and v 5 h (x), the derivative of the function

y 5 f (g (h(x))) is   
dy

 ___ 
dx   5   

dy
 ___ 

du
      du ___ 

dv
      dv ___ 

dx  .
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Example 2 

Differentiate each function by applying the chain rule. Start by 
‘decomposing’ the composite function into the ‘outside’ function and the 
‘inside’ function.

a) y 5 cos  3x b) y 5   √
________

 3x 2 1 5x  

c) y 5   1 _______ 
3x 2 1 x

   d) y 5 sin 2 x

e) y 5 sin x 2 f) y 5  3 √
________

 (7 2 5x)2  

Solution

a) y 5 f (g (x)) 5 cos 3x ⇒ ‘outside’ function is f (u) 5 cos u

 ⇒ ‘inside’ function is g (x) 5 3x

In Leibniz form:   
dy

 ___ 
dx

   5   
dy

 ___ 
du

      
du

 ___ 
dx

   5 (2sin u)  3 5 23 sin(3x)

Or, alternatively, in function notation form:

  
dy

 ___ 
dx

   5 f 9(g (x))  g9(x) 5 [2sin(3x)]  3 5 23 sin(3x)
 

 
  derivative of ‘outside’ function                                                                
with ‘inside’ function unchanged

   3 derivative of ‘inside’ function

b) y 5 f (g (x)) 5   √
________

 3x 2 1 5x   ⇒ 
 ‘outside’ function is f (u)  5   √

__

 u   5  u   
1
 _ 2       

 f 9(u) 5   1 _ 2   u 
2   1 _ 2    ⇒ ‘inside’ function is g (x) 5 3x 2 1 5x

  
dy

 ___ 
dx

   5 f 9(g (x))  g9(x) 5   1 _ 2  (3x 2 1 5x ) 
2   1 _ 2     (6x 1 5)

  
dy

 ___ 
dx

   5   6x 1 5 ___________ 
2(3x 2 1 5x )   

1
 _ 2   
   or   6x 1 5 __________ 

2  √
________

 3x 2 1 5x  
  

c) y 5 f (g (x)) 5   1 _______ 
3x 2 1 x

   ⇒ 

 ‘outside’ function is f (u) 5   1 __ 
u

   5 u21    

 f 9(u) 5 2u22 ⇒ ‘inside’ function is g (x) 5 3x 2 1 x

  
dy

 ___ 
dx

   5 f 9(g (x))  g9(x) 5 2(3x 2 1 x)22  (6x 1 1)

  
dy

 ___ 
dx

   5 2   6x 1 1 _________ 
(3x 2 1 x)2  

d) The expression sin 2 x is an abbreviated way of writing (sin x)2.

y 5 f (g (x)) 5 sin 2 x 5 (sin x)2 ⇒ 

‘outside’ function is f (u) 5 u2    

f 9(u) 5 2u ⇒ ‘inside’ function is g (x) 5 sin x

  
dy

 ___ 
dx

   5 f 9(g (x))  g9(x) 5 2 sin x  cos x

  
dy

 ___ 
dx

   5 2 sin x cos x

e) The expression sin x 2 is equivalent to sin(x 2), and is not (sin x )2.
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If y 5 f (g (x)) 5 sin(x 2), then the ‘outside’ function is f (u) 5 sin u, and 
the ‘inside’ function is g (x) 5 x 2.

By the chain rule,   
dy

 ___ 
dx

   5 f 9(g (x))  g9(x)

  5 cos(x 2)  2x

   
dy

 ___ 
dx

   5 2x cos(x 2)

f) First change from radical (surd) form to rational exponent form.

y 5  3 √
________

 (7 2 5x)2   5 (7 2 5x )   
2
 _ 3   

y 5 f (g (x)) 5 (7 2 5x )   
2
 _ 3    ⇒ ‘outside’ function f (u) 5  u    

2
 _ 3   

 ⇒ ‘inside’ function g (x) 5 7 2 5x

By the chain rule,   
dy

 ___ 
dx

   5 f 9(g (x))  g9(x)

 5   2 _ 3  (7 2 5x ) 2   1 _ 3     (25)

  
dy

 ___ 
dx

   5 2   10 _________ 
3(7 2 5x )   

1
 _ 3   
   or 2   10 __________ 

3( 
3
 √

______
 7 2 5x  )
  

Example 3 

Find the derivative of the function y 5 (2x 1 3)3 by:

a) expanding the binomial and differentiating term-by-term

b) the chain rule.

Solution
a) y 5 (2x 1 3)3 5 (2x 1 3)(2x 1 3)2

  5 (2x 1 3)(4x 2 1 12x 1 9)

  5 8x 3 1 24x 2 1 18x 1 12x 2 1 36x 1 27

  5 8x 3 1 36x 2 1 54x 1 27

    
dy

 ___ 
dx

   5 24x 2 1 72x 1 54

b) y 5 f (g (x)) 5 (2x 1 3)3  ⇒ y 5 f (u) 5 u 3; u 5 g (x) 5 2x 1 3
⇒ f 9(u) 5 3u 2; g 9(x) 5 2

   
dy

 ___ 
dx

   5   
dy

 ___ 
du

      
du

 ___ 
dx

   5 3u 2    2 5 6u 2

 5 6(2x 1 3)2

 5 6(4x 2 1 12x 1 9)

 5 24x 2 1 72x 1 54

 Hint: Aim to write a function 
in a way that eliminates any 
confusion regarding the argument 
of the function. For example, write 
sin(x 2) rather than sin x 2; 1 1 ln x 
rather than ln x 1 1; 5 1   √

__

 x   rather 
than  

 
 √

__

 x   1 5; ln(4 2 x 2) rather than 
ln 4 2 x 2.
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The product rule
With the differentiation rules that we have learned thus far we can 
differentiate some functions that are products. For example, we can 
differentiate the function f (x) 5 (x 2 1 3x)(2x 2 1) by expanding and then 
differentiating the polynomial term-by-term. In doing so, we are applying 
the sum and difference, constant multiple and power rules from Section 
13.2.

  f (x) 5 (x 2 1 3x)(2x 2 1) 5 2x 3 1 5x 2 2 3x

  f 9(x) 5 2   d ___ 
dx

   (x 3) 1 5   d ___ 
dx

   (x 2) 2 3   d ___ 
dx

  (x)

 f 9(x) 5 6x 2 1 10x 2 3

The sum and difference rule states that the derivative of a sum/difference 
of two functions is the sum/difference of their derivatives. Perhaps 
the derivative of the product of two functions is the product of their 
derivatives. Let’s try this with the above example.

  f (x) 5 (x 2 1 3x)(2x 2 1)

  f 9(x) 5   d ___ 
dx

   (x 2 1 3x)      d ___ 
dx

    (2x 2 1)?

 f 9(x) 5 (2x 1 3)    2?

 f 9(x) 5 4x 1 6? However, 4x 1 6  6x 2 1 10x 2 3.

Thus, one important fact we have learned from this example is that 
the derivative of a product of two functions is not the product of their 
derivatives. However, there are many products, such as  
y 5 (4x 2 3)3(x 2 1)4 and f (x) 5 x 2 sin  x, for which it is either difficult or 
impossible to write the function as a polynomial. In order to differentiate 
functions like this, we need a ‘product’ rule.

Gottfried Wilhelm Leibniz (1646–1716)

Leibniz was a German philosopher, mathematician, scientist and professional 
diplomat – and, although self-taught in mathematics, was a major contributor 
to the development of mathematics in the 17th century. He developed the 
elementary concepts of calculus independent of, but slightly after, Newton. 
Nevertheless, the notation that Leibniz created for differential and integral calculus 
is still in use today. Leibniz’ approach to the development of calculus was more 
purely mathematical, whereas Newton’s was more directly connected to solving 
problems in physics. Leibniz created the idea of differentials (infinitely small 
differences in length), which he used to define the slope of a tangent, before the 
modern concept of limits was fully developed. Thus, Leibniz considered the 

derivative   
dy

 ___ 
dx   as the quotient of two differentials, dy and dx. Though it caused 

some confusion and consternation in his time (and to some extent still), Leibniz 
manipulated differentials algebraically to establish many of the important 
differentiation rules – including the product rule.
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The product rule
If y is a function in terms of x that can be expressed as the product of two functions u and 
v that are also in terms of x, the product y 5 uv can be differentiated as follows:

  
dy

 ___ 
dx   5   d ___ 

dx  (uv) 5 u   dv ___ 
dx   1 v   du ___ 

dx  

or, equivalently, if y 5 f (x)    g (x), then

   
dy

 ___ 
dx   5   d ___ 

dx   [f (x)    g (x)] 5 f (x)    g9(x) 1 g (x)    f 9(x)

Proof of the product rule

Let y 5 F (x) 5 f (x)  g (x) where f and g are differentiable functions of x 
(i.e. derivative exists for all x) and their product is defined for all values of 
x in the domain.

We proceed by applying the limit definition of the derivative and 
properties of limits. Note that in the second line of the proof we have 
introduced the additional term, f (x 1 h)g (x), and its opposite (thereby 
adding zero) in the numerator. The purpose of this is to allow us to analyze 
separately the changes in f and g as h goes to zero. Thus, in the fifth line we 
are eventually able to isolate limits that are the derivatives of f and g.

F 9(x) 5   lim    
h → 0

   
f (x 1 h)g (x 1 h) 2 f (x)g (x)

   ________________________  
h

   

  5   lim    
h → 0

   
f (x 1 h)g (x 1 h) 2 f (x 1 h)g (x) 1 f (x 1 h)g (x) 2 f (x)g (x)

     _________________________________________________   
h
   

  5   lim    
h → 0

  [ f (x 1 h)  
g (x 1 h) 2 g (x)

  ______________ 
h

    1 g (x)  
f (x 1 h) 2 f (x)

  _____________ 
h

    ] 
  5   lim    

h → 0
  [ f (x 1 h)  

g (x 1 h) 2 g (x)
  ______________ 

h
    ]  1   lim    

h → 0
  [ g (x)  

f (x 1 h) 2 f (x)
  _____________ 

h
    ] 

  5   lim    
h → 0

 f (x 1 h)    lim    
h → 0

   
g (x 1 h) 2 g (x)

  ______________ 
h

    1   lim    
h → 0

 g (x)    lim    
h → 0

   
f (x 1 h) 2 f (x)

  _____________ 
h

   

  5 f (x)  g9(x) 1 g (x)  f 9(x)

A less formal but perhaps more intuitive justification can be provided by

considering the product rule written in the form

  
dy

 ___ 
dx

   5   
d

 ___ 
dx

  (uv) 5 u  
dv

 ___ 
dx

   1 v  
du

 ___ 
dx

   

and analyzing the relationship between the functions u, v and y when there 
is a small change in the variable x. Recall that the definition of the 

derivative (Section 13.2) is essentially the limit of   
change in y

 __________ 
change in x  

 
as the 

‘change in x’ goes to zero. Let dx (read ‘delta x’) and dy represent small 

changes in x and y, respectively. As dx → 0, then   
dy

 ___ 
dx   →   

dy
 __ dx  , i.e. the derivative

of y with respect to x.  

Any small change in x, i.e. dx, will cause small changes, du and dv, in the 
values of functions u and v respectively. Since y 5 uv, these changes will also 
cause a small change, dy, in the value of function y.

Now consider the rectangles in Figure 15.3. The area of the first smaller 
rectangle is y 5 uv. The values of u and v then increase by du and dv respectively.
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The area of the larger rectangle is y � �y � uv � u�v � v�u � �u�v.

The product uv changes by the amount �y � u�v � v�u � �u�v.

Dividing through by �x:   
�y

 ___ 
�x

   � u   �v ___ 
�x

   � v    �u ___ 
�x

   � �u    �v ___ 
�x

  .

Let �x   →   0 and �u  →  0, then:

  
�y

 ___ 
�x

   � u    �v ___ 
�x

   � v    �u ___ 
�x

   � �u    �v ___ 
�x

   ⇒   
dy

 ___ 
dx

   � u    dv ___ 
dx

   � v    du ___ 
dx

   � 0  �    dv ___ 
dx

  

Giving   
dy

 ___ 
dx

   � u    dv ___ 
dx

   � v    du ___ 
dx

  , the product rule.

Example 4 
Find the derivative of the function y � (x 2 � 3x)(2x � 1) by:

a) expanding the binomial and differentiating term-by-term

b) the product rule.

Solution

a) Expanding gives y � (x 2 � 3x)(2x � 1) � 2x 3 � 5x 2 � 3x.

Therefore,   
dy

 ___ 
dx

   � 6x 2 � 10x � 3.

b) Let u(x) � x 2 � 3x and v(x) � 2x � 1, then y � u(x) � v(x) or simply y � uv.

By the product rule (in Leibniz form),

  
dy

 ___ 
dx

   �   
d

 ___ 
dx

  (uv) � u  
dv

 ___ 
dx

   � v   
du

 ___ 
dx

   � (x 2 � 3x) � 2 � (2x � 1) � (2x � 3)

 � (2x 2 � 6x) � (4x 2 � 4x � 3)

 � 6x 2 � 10x � 3

This result agrees with the derivative we obtained earlier from 
differentiating the expanded polynomial.

Example 5 

Given y � x 2 sin x, find   
dy

 ___ 
dx

  .

Solution

Let y � f (x)  �  g (x) � x 2 sin x ⇒ f (x) � x 2 and g (x) � sin x.

By the product rule (function notation form),

   
dy

 ___ 
dx

   �   d ___ 
dx

   [f (x)  �  g (x)] � f (x)  �  g �(x) � g (x)  �  f �(x)

  � x 2  �  cos x � (sin x)  �  2x

   
dy

 ___ 
dx

   � x 2 cos x � 2x  sin x

As with the chain rule, it is very helpful to remember the structure of the 
product rule in words.

uv

u

v

uv vδu

uδv δuδv

u δu

v
u � δv

v � δu

δv

Figure 15.3

M015_MATHS_SB_4968_C15.indd   709 07/09/12   8:09 AM
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 first factor second factor

  
  
dy

 ___
 

dx
   5   d ___

 
dx

   [f (x)    g (x)] 5 f (x)    g 9(x) 1 g (x)    f 9(x)
     
 product of 

5
 first 

3
 derivative 

1
 second 

3
 derivative

 two functions,  factor  of second  factor  of first
 i.e. factors    factor    factor

Example 6 

Find an equation of the line tangent to the curve y 5 sin x cos(2x) at the 
point where x 5   p __ 

6
  .

Solution

To find the slope of the line tangent we need to find the derivative of 
y 5 sin x cos(2x). To do this we will have to use more than one of the 
differentiation rules. Firstly, we need the product rule since the function 
consists of the two factors sin x and cos(2x). Secondly, the second factor 
is a composite of cosine and 2x so we need the chain rule. In essence the 
application of the chain rule will be ‘nested’ within the product rule.

   
dy

 ___ 
dx

   5 sin x   
d

 ___ 
dx

  (cos(2x)) 1 cos(2x)  
d

 ___ 
dx

   sin x Product rule applied to entire function.

   
dy

 ___ 
dx

   5 sin x(22 sin(2x)) 1 cos(2x)cos x Chain rule for   d ___ 
dx    (cos(2x)).

   
dy

 ___ 
dx

   5 22 sin x sin(2x) 1 cos x cos(2x)

At x 5   
p

 __ 
6

  ,   
dy

 ___ 
dx

   5 22 sin (   p __ 
6

   ) sin ( 2    
p

 __ 
6

   )  1 cos (   p __ 
6

   ) cos ( 2    
p

 __ 
6

   ) 

  5 22 sin (   p __ 
6

   ) sin (   p __ 
3

   )  1 cos (   p __ 
6

   ) cos (   p __ 
3

   )  5 22 (   1 __ 
2

   )  (     √
__

 3  
 ___ 

2
   )  1  (     √

__
 3  
 ___ 

2
   )  (   1 __ 

2
   )  5 2   

  √
__

 3  
 ___ 4  .

Hence, slope of the tangent line is 2   
  √

__
 3  
 ___ 4  .

Find the y-coordinate of the tangent point:

At x 5   p __ 
6

  , y 5 sin (   p __ 
6

   ) cos ( 2    p __ 
6

   )  5 sin (   p __ 
6

   ) cos (   p __ 
3

   )  5  (   1 __ 
2

   )  (   1 __ 
2

   )  5   1 __ 4   ⇒ tangent point is  (   p __ 
6

  ,   1 __ 4   ) 

Using point-slope form for a linear equation, gives

y 2   1 __ 4   5 2   
  √

__
 3  
 ___ 4   ( x 2   p __ 

6
   )  ⇒ y 5 2   

  √
__

 3  
 ___ 4  x 1   

p  √
__

 3  
 ____ 

24
   1   1 __ 4   or y 5 2   

  √
__

 3  
 ___ 4  x 1   

6 1 p  √
__

 3  
 ________ 

24
  .

Therefore, an equation for the line tangent to y 5 sin x cos(2x) at x 5   p __ 
6

   is 

y 5 2   
  √

__
 3  
 ___ 4  x 1   

6 1 p  √
__

 3  
 ________ 

24
  .

Our GDC can give a quick visual check for this result.  [   p __ 
6

    0.523 598 78 ] 
WINDOWPlot1 Plot2 Plot3
Xmin=-π 4
Xmax=π   2

Xres=1

Xscl=1 

Yscl=1

Ymin=-1.5 
Ymax=1 

Y1=sin(X)cos(2x)

X=.52359878 Y=.25

Y1=sin(X)cos(2x

Y3=
Y4=
Y5=

Y2=(  (3) 4)X+(
6+π
)

(3)) 24
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The quotient rule
Just as the derivative of the product of two functions is not the product 
of their derivatives, the derivative of a quotient of two functions is not 
the quotient of their derivatives. Let’s derive a rule for the quotient of two 
functions by, once again, returning to the limit definition for the derivative.

Let y 5 F (x) 5   
f (x)

 ____ 
g (x)

   where f and g are differentiable functions of x and

their quotient is defined for all values of x in the domain.

As with the proof of the product rule we introduce a term, f (g)g (x) in this 
case, and its opposite (thereby adding zero) in the numerator (in the 3rd 
line below). This allows us (in the 5th line) to isolate limits that are the 
derivatives of f and g.

F 9(x) 5   lim    
h → 0

   

  
f (x 1 h)

 ________ 
g (x 1 h)

   2   
f (x)

 ____ 
g (x)

  

  ______________ 
h

   

  5   lim    
h → 0

   
f (x 1 h)g (x) 2 f (x)g (x 1 h)

   _______________________  
h  g (x)g (x 1 h)

  

  5   lim    
h → 0

   
f (x 1 h)g (x) 2 f (x)g (x) 1 f (x)g (x) 2 f (x)g (x 1 h)

    _________________________________________   
h  g (x)g (x 1 h)

  

  5   lim    
h → 0

   
g (x)  

f (x 1 h) 2 f (x)
  _____________ 

h
    2 f (x)  

g (x 1 h) 2 g (x)
  ______________ 

h
   

    ___________________________________   
g (x)g (x 1 h)

  

       

5   
  lim    
h → 0

 g (x)    lim    
h → 0

   
f (x 1 h) 2 f (x)

  _____________ 
h

    2   lim    
h → 0

 f (x)    lim    
h → 0

   
g (x 1 h) 2 g (x)

  ______________ 
h

   
     __________________________________________________   

  lim    
h → 0

 g (x)g (x 1 h)
  

  5   
g (x)  f 9(x) 2 f (x)  g9(x)

  _____________________  
g (x)g (x)

  

  5   
g (x)  f 9(x) 2 f (x)  g9(x)

  _____________________  
[g (x)]2  

The quotient rule
If y is a function in terms of x that can be expressed as the quotient of two functions u 
and v that are also in terms of x, the quotient y 5   u __ v   can be differentiated as follows:

  
dy

 ___ 
dx   5   d ___ 

dx    (    u __ v   )  5   
v   du ___ 

dx   2 u   dv ___ 
dx  
 __________ 

v 2
  

or, equivalently, if y 5   
f (x)

 ____ 
g (x)

  , then

  
dy

 ___ 
dx   5   d ___ 

dx    [   f (x)
 ____ 

g (x)
   ]  5   

g (x)    f 9(x) 2 f (x)    g9(x)
  ____________________  

[g (x)]2  

As with the chain rule and the product rule, it is helpful to recognize the 
structure of the quotient rule by remembering it in words:

 (   derivative                    
of quotient

   )  5    
(denominator) 3  (   derivative of                      numerator   )  2 (numerator)  (   derivative of       

denominator
  ) 
     ________________________________________________   

(denominator)2  
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Example 7 
For each function, find its derivative (i) by the quotient rule, and (ii) by  
another method.

a) g (x) 5   5x 21 ______ 
3x 2   b) h(x) 5   1 ______ 

2x 2 3
   c) f (x) 5   3x 2 2 ______ 

2x 2 5
  

Solution

a) (i) g (x) 5 y 5   u __ 
v
   5   5x 2 1 ______ 

3x 2   

  g9(x) 5   
dy

 ___ 
dx

   5   
v  du ___ 

dx
   2 u  dv ___ 

dx
  
 _________ 

v2   5   
3x 2  5 2 (5x 2 1)  6x

  ___________________  
(3x 2)2  

  5   15x 2 2 30x 2 1 6x  _______________ 
9x 4  

  5   
3x(25x 1 2)

 ___________ 
9x 4  

  g9(x) 5   25x 1 2 ________ 
3x 3  

(ii) Using algebra, ‘split’ the numerator: 

 g (x) 5   5x 2 1 ______ 
3x 2   5   5x ___ 

3x 2   2   1 ___ 
3x 2   5   5 __ 

3x
   2   1 ___ 

3x 2   5   5 __ 
3

  x21 2   1 __ 
3

  x22

Now, differentiate term-by-term using the power rule.

g9(x) 5   5 __ 
3

     d ___ 
dx

  (2x21) 2   1 __ 
3

     d ___ 
dx

  (x23)

 5   5 __ 
3

  (2x22) 2   1 __ 
3

  (22x23)

g9(x) 5 2   5 ___ 
3x 2   1   2 ___ 

3x 3  

[Results for (i) and (ii) are equivalent:

  2   5 ___ 
3x 2   1   2 ___ 

3x 3   5 2   5 ___ 
3x 2      

x __ 
x
   1   2 ___ 

3x 3   5 2   5x ___ 
3x 3   1   2 ____ 

3x 3 
  5   25x 1 2 ________ 

3x 3  ]
b) (i) y 5   

f (x)
 ____ 

g (x)
   5   1 ______ 

2x 2 3
   ⇒ f (x) 5 1 and g (x) 5 2x 2 3

By the quotient rule (function notation form),

  
dy

 ___ 
dx

   5   
d

 ___ 
dx

   [   f (x)
 ____ 

g (x)
   ]  5   

g (x)  f 9(x) 2 f (x)  g9(x)
  ____________________  

[g (x)]2  

 5   
(2x 2 3)  0 2 1  (2)

  __________________  
(2x 2 3)2  

   
dy

 ___ 
dx

   5 2   2 ________ 
(2x 2 3)2  

(ii) y 5 f (g (x)) 5   1 ______ 
2x 2 3

   5 (2x 2 3)21⇒ ‘outside’ function is f (u) 5 u21 

  ⇒ f 9(u) 5 2u22

   ⇒ ‘inside’ function is g (x) 5 2x 2 3

By the chain rule (function notation form),

  
dy

 ___ 
dx

   5 f 9(g (x))  g9(x) 5 2(2x 2 3)22  2

  
dy

 ___ 
dx

   5 2   2 ________ 
(2x 2 3)2  

 Hint: Since order is important 
in subtraction (subtraction is not 
commutative), be sure to set up 
the numerator of the quotient rule 
correctly.

 Hint: Note that we could have 
proved the quotient rule by writing 

the quotient   
f (x)

 ____ g (x)
   as the product 

f (x) [g (x)]21 and apply the product 
rule and chain rule. As some of the 
examples here show, the derivative 
of a quotient can also be found by 
means of the product rule and/or 
the chain rule.
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c) (i) f (x) 5 y 5   u __ v   5   3x 2 2 ______ 
2x 2 5

   f 9(x) 5   
dy

 ___ 
dx

   5   
v  du ___ 

dx
   2 u  dv ___ 

dx
  
 _________ 

v2  

   5   
(2x 2 5)  3 2 (3x 2 2)  2

  ______________________  
(2x 2 5)2  

 5   6x 2 15 2 6x 1 4  _______________  
(2x 2 5)2  

 f 9(x) 5   211 ________ 
(2x 2 5)2  

 (ii)  Rewrite f (x) as a product and apply the product rule (with chain 
rule imbedded).

f (x) 5 y 5   3x 2 2 ______ 
2x 2 5

   5 (3x 2 2)(2x 2 5)21 ⇒ y 5 uv, u 5 3x 2 2 

and v 5 (2x 2 5)21

Note: v 5 (2x 2 5)21 is a composite function, so we’ll need the 

chain rule to find   dv ___ 
dx

  .

f 9(x) 5   d ___ 
dx

  (uv) 5 u  dv ___ 
dx

   1 v  du ___ 
dx

   

  5 (3x 2 2)    d ___ 
dx

  [(2x 2 5)21] 1 (2x 2 5)21  3

  5 (3x 2 2)[2(2x 2 5)22  2] 1 3(2x 2 5)21

 Chain rule applied for   d __ 
dx   [(2x 2 5)21)].

  5 (26x 1 4)(2x 2 5)22 1 3(2x 2 5)21

  5 (2x 2 5)22[(26x 1 4) 1 3(2x 2 5)]
 Factorizing out GCF of (2x 2 5)2.

  5 (2x 2 5)22[26x 1 4 1 6x 2 15]

f 9(x) 5   211 ________ 
(2x 2 5)2  

As Example 7 demonstrates, before differentiating a quotient it is 
worthwhile to consider if performing some algebra may allow other more 
efficient differentiation techniques to be used.

Higher derivatives

If y 5 f (x) is a function of x then, in general, the derivative – expressed as

either   
dy

 ___ 
dx

   or f 9(x) – will be some other function of x. As we have learned

the derivative indicates the rate of change of f (x) with respect to x, as a 
function of x. In Section 13.3 we took the ‘derivative of the derivative’ of

a function, that is, a function’s second derivative, denoted by   
d 2y

 ___ 
dx 2   or f (x).

The second derivative is an effective tool in verifying maximum, minimum

 Hint: The function h(x) 5   3x 2
 ______ 5x 2 1   

initially looks similar to the function 
g in Example 7, part a) (they’re 
reciprocals). However, it is not 
possible to ‘split’ the denominator 
and express as two fractions.

Recognize that   3x 2
 ______ 5x 2 1   is not

equivalent to   3x 2
 ____ 5x   2   3x 2

 ____ 1  . Hence, in

order to differentiate h(x) 5   3x 2
 ______ 5x 2 1  

we would apply either the quotient 
rule, or the product rule with  
the function rewritten as  
h(x) 5 3x 2 (5x 2 1)21 and using the 
chain rule to differentiate the factor 
(5x 2 1)21.
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and inflexion points on the graph of a function. In general,   
d 2y

 ___ 
dx 2   will also be

a function of x and so may be differentiated to give the third derivative of

y with respect to x, denoted by   
d 3y

 ___ 
dx 3  . The nth derivative of y with respect to

x is denoted by   
d ny

 ___ 
dx n  . If the notation f (x) is used, the first, second and third

derivatives are written as f 9(x), f (x) and f (x), respectively. The fourth 
derivative and higher is denoted using a superscript number rather than a 
‘prime’ mark. For example, f (4)(x) represents the fourth derivative of the 
function f with respect to x.

The process of computing the nth derivative of a function can be very 
tedious and can only be achieved by computing the successive derivatives

in turn. It is worthwhile to attempt to simplify the function   
dy

 ___ 
dx

   before

differentiating to find   
d 2y

 ___ 
dx 2  , and in turn try to simplify this result before

computing   
d 3y

 ___ 
dx 3  , and so on.

Example 8 

Given y 5   1 __ x  , find a formula for the nth derivative   
d ny

 ___ 
dx n  .

Solution

Let’s take successive derivatives of the function until we can discern a 
pattern and then formulate a conjecture for the formula.

  y 5   1 __ x   5 x21

  
dy

 ___ 
dx

    5 2x22 5   
21

 ___ 
x 2  

  
d 2y

 ___ 
dx 2   5 (22)(21)x23 5   

2
 __ 

x 3  

  
d 3y

 ___ 
dx 3   5 (23)(2)(1)x24 5   

26
 ___ 

x 4  

  
d 4y

 ___ 
dx 4   5 (4)(3)(2)(1)x25 5   

24
 ___ 

x 5  

  
d 5y

 ___ 
dx 5   5 (25)(4)(3)(2)(1)x26 5   

2120
 _____ 

x 6  

We observe that the sign of the result alternates: negative when n is odd, 
and positive when n is even. Thus, we need to incorporate the expression 
(21)n into our formula since the successive values of (21)n are 21, 1, 21, 
1, ... . Another factor needs to be n! (n factorial) because n! 5 n(n 2 1)(n 
2 2)    2  1. The last piece of the formula is that the power of x in the 
denominator is one more than the value of n.

Therefore,   
d(n)y

 ____ 
dx(n)

   5   
(21)nn!

 _______ 
x n 11  .
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Exercise 15.1

 1 Find the derivative of each function.

a) y 5 (3x 2 8)4 b) y 5   √
_____

 1 2 x   c) y 5 sin x cos x

d) y 5 2 sin (   x __ 
2

   )  e) y 5 (x 2 1 4)22 f ) y 5   x 1 1 _____ x 2 1
  

g) y 5   1 ______ 
  √

_____
 x 1 2  
   h) y 5 cos2 x i) y 5 x  √

_____
 1 2 x  

j) y 5   1 ____________  
3x 2 2 5x 1 7

   k) y 5  
3
 √

______
 2x 1 5   l) y 5 (2x 2 1)3(x 4 1 1)

m) y 5   sin x ____ x    n) y 5   x 2
 _____ x 1 2

   o) y 5  
3
 √

__

 x 2   cos x

 2 Find the equation of the line tangent to the given curve at the specified value of 
x. Express the equation exactly in the form y 5 mx 1 c.

a) y 5 (2x 2 2 1)3 x 5 2 1 b) y 5   √
_______

 3x 2 2 2    x 5 3

c) y 5 sin 2x x 5 p d) y 5   x
 3 1 1 ______ 
2x    x 5 1

 3 An object moves along a line so that its position s relative to a starting point at 
any time t > 0 is given by s(t) 5 cos(t2 2 1).

a) Find the velocity of the object as a function of t.

b) What is the object’s velocity at t 5 0?

c) In the interval 0 , t , 2.5, find any times (values of t) for which the object is 
stationary.

d) Describe the object’s motion during the interval 0 , t , 2.5.

For questions 4–6, find the equation of a) the tangent, and b) the normal to the 
curve at the given point.

 4 y 5   2 ______ x 2 2 8
   at (3, 2)

 5 y 5   √
______

 1 1 4x   at (2, 3)

 6 y 5   x _____ x 1 1
   at (1,   1 _ 2  )

 7 Consider the trigonometric curve y 5 sin ( 2x 2   p __ 2   ) .

a) Find   
dy

 ___ 
dx   and   

d 2y
 ___ 

dx 2  .

b) Find the exact coordinates of any inflexion points for the curve in the interval 
0 , x , p.

 8 A curve has equation y 5 x(x 2 4)2.
a) For this curve, find

(i) the x-intercepts
(ii) the coordinates of the maximum point
(iii) the coordinates of the point of inflexion.

b) Use your answers to part a) to sketch a graph of the curve for 0 < x < 4, 
clearly indicating the features you have found in part a).

 9 Consider the function f (x) 5   x
 2 2 3x 1 4 ___________ 
(x 1 1)2  .

a) Show that f 9(x) 5   5x 2 11 _______ 
(x 1 1)3  .

b) Show that f (x) 5   210x 1 38 __________ 
(x 1 1)4  .

c) Does the graph of f have an inflexion point at x 5 3.8? Explain.
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 15.2 Derivatives of trigonometric and 
exponential functions

Although it is important to provide formal justifications for any of 
our differentiation rules (as we did in the previous section), we should 
not forget that the derivative is a rule that gives us the slope of the line 
tangent to the graph of a function at a particular point. Thus, we can use a 
function’s derivative to deduce the behaviour of its graph. Conversely, we 
can gain insight about the derivative of a function from the shape of its 
graph.

In Chapter 13, we formally determined that the derivative 
of sin x is cos x and that the derivative of cos x is 2sin x by 
using the limit definition of the derivative. We could have 
made a very confident conjecture for the derivative of sin x 
by analyzing its graph as follows.

We start with the graph of f (x) 5 sin x (Figure 15.4). The 
graph of  y 5 sin x is periodic, with period 2p, so the same 
will be true of its derivative that gives the slope at each point 
on the graph. Therefore, it’s only necessary for us to consider 
the portion of the graph in the interval 0 < x < 2p.

Figure 15.5 shows two pairs of axes having equal scales on the x- and y-axes 
and corresponding x-coordinates aligned vertically. On the top pair of axes 
y 5 sin x is graphed with tangent lines drawn at nine selected points. The 
points were chosen such that the slopes of the tangents at those points, 
in order, appear to be equal to 1,   1 _ 2  , 0, 2   1 _ 2  , 21, 2   1 _ 2  , 0,   1 _ 2  , 1. The values of 
these slopes were then plotted in the bottom graph with the y-coordinate 

10 Find the first and second derivatives of the function f (x) 5   x 2 a _____ x 1 a  .

11 Given y 5   
1
 _____ 1 2 x  , find a formula for the nth derivative   

d ny
 ____ 

dx n  .

12 The graph of the function g (x) 5   8 ______ 
4 1 x 2   is called the witch of Agnesi.

a) Find the exact coordinates of any extreme values or inflexion points.

b) Determine all values of x for which (i) g (x) < 0, (ii) g (x) 5 0, and (iii) g (x) > 0.

c) Find (i)   lim    
x → 2

 g (x), and (ii)   lim    
x → 1

 g (x).

d) Sketch the graph of g.

13 Use the product rule to prove the constant multiple rule for differentiation. That

 is, show that   d ___ 
dx  (c  f (x)) 5 c    d ___ 

dx  (f (x)) for any constant c.

14 If y 5 x 4 2 6x 2, show that y,   
dy

 ___ 
dx   and   

d 2y
 ___ 

dx 2   are all negative on the interval 0 , x , 1,

 but that   
d 3y

 ___ 
dx 3   is positive on the same interval.

x

y

y � sin x

�1

0

1

�2π�3π �π π 2π 3π

Figure 15.4
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of each point indicating the slope of the curve for that particular x value. 
Hence, the points in the bottom pair of axes should be on the graph of the 
derivative of y 5 sin x.

Figure 15.6 is the same as Figure 15.5 except with the graph of y 5 sin x, 
the grid lines and the lines connecting points between the two graphs 
removed.

x

y

y � sin x

�1

1

0
1 2 3 4 5 6 7

x

y

�1

1

slope

0
1 2 3 4 5 6 7

 Hint: Note that the graphs in 
Figures 15.4, 15.5, 15.6 and 15.7 
have x in radians. As mentioned 
previously, we must only use radian 
measure when trigonometric 
functions are involved in calculus.

x

y

�1

1

0
1 2 3 4 5 6 7

x

y

�1

1

slope

0
1 2 3 4 5 6 7

Figure 15.5: Analyzing the slope 
of tangents to the graph of  
y 5 sin x.

Figure 15.6

Figure 15.7
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Clearly the points representing the slope of the tangents to y 5 sin x 
plotted in Figure 15.7 are tracing out the graph of y 5 cos x.

Although we will use this informal approach to conjecture the derivatives 
for y 5 e  x and y 5 ln x, it does not always work so smoothly. For example, 
let’s analyze the graph of y 5 tan x in an attempt to guess its derivative.

We can use our GDC command that evaluates the derivative of a function 
at a specified point to graph the value of the derivative at all points on 
a graph. We used this technique in Chapter 13 to confirm the result in 
Example 9 part d). The GDC screen images below show the graph of
y 5 tan x and then the GDC graphing its derivative (in bold) on the 
same set of axes. Although, as pointed out in Section 13.3, in general it is 
incorrect to graph a function and its derivative on the same pair of axes 
(units on the vertical axis will not be the same), it is helpful in seeing the 
connection between the graph of a function and that of its derivative.

The graph of the derivative of tan x is always above the x-axis meaning 
that the derivative is always positive. This clearly agrees with the fact that 
the tangent function, except for where it is undefined, is always increasing 
(moving upwards) as the values of x increase. However, the shape of 
the graph does not bring to mind an easy conjecture for a rule for the 
derivative of tan x.

Rather than use the limit definition for finding the derivative of tan x let’s 

write tan x as   sin x ____ cos x   and use the quotient rule.

  d ___ 
dx

  (tan x) 5   d ___ 
dx

   (   sin x ____ cos x   )  5   
cos x   d ___ 

dx
  (sin x) 2 sin x   d ___ 

dx
  (cos x)

   __________________________  
cos2 x

   

  5   
cos x cos x 2 sin x(2sin x)

  _____________________  
cos2 x

   

  5   cos2 x 1 sin 2 x  ____________ 
cos2 x

   

  5   1 _____ 
cos2 x

  

  5 sec2 x Therefore,   d ___ 
dx

  (tan x) 5 sec2 x.

Similarly, it can be shown that   d ___ 
dx

  (cot x) 5 2csc2 x.

Plot1

Y1= tan(X)
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

Plot1

Y1= tan(X)
Plot2 Plot3

Y2= nDeriv(Y1,X,

Y3=
Y4=
Y5=
Y6=

WINDOW
Xmin=-1.570796…
Xmax=7.8539816…
Xscl=π/2
Ymin=–3
Ymax=3
Yscl=1
Xres=1

X)
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To find the derivative of sec x we can use the chain rule as follows.

  d ___ 
dx

  (sec x) 5   d ___ 
dx

   (   1 ____ cos x   )  5   d ___ 
dx

  [(cos x)21]

  5 2(cos x)22(2sin x)             Applying chain rule.

  5   sin x _____ 
cos2 x

  

  5   1 ____ cos x      sin x ____ cos x  

  5 sec x tan x 

Therefore,   d ___ 
dx

  (sec x) 5 sec x tan x.

Similarly, it can be shown that   d ___ 
dx

  (csc x) 5 2csc x cot x.

The table below lists the derivatives of the six trigonometric functions.

f (x) f 9(x)

sin x cos x
cos x 2sin x
tan x sec2 x
cot x 2csc2 x
sec x sec x tan x
csc x 2csc x cot x

Example 9 
Find the derivative of each function.

a) y 5 cos(  √
_

 x  ) b) y 5   x 3 ____ 
sin x

  

c) y 5 x 2 tan(3x) d) y 5 sec2(3x)

Solution

a)   
dy

 ___ 
dx

   5   
d

 ___ 
dx

  [cos(  √
_

 x  )] 5 2sin(  √
_

 x  )    
d

 ___ 
dx

  (  √
_

 x  ) Applying chain rule.

  5 2sin(  √
_

 x  )    d ___ 
dx

   (  x   
1
 _ 2    ) 

  5 2sin(  √
_

 x  )   (   1 __ 
2

   x 
2   1 _ 2    )  Applying power rule.

Therefore,   
dy

 ___ 
dx

   5 2   
sin(  √

_

 x  )
 _______ 

2  √
_

 x  
  .

b) Method 1 (quotient rule):

  
dy

 ___ 
dx

   5   
d

 ___ 
dx

   (   x 3

 ____ 
sin x

   )  5   
sin x    d ___ 

dx
  (x 3) 2 x 3    d ___ 

dx
  (sin x)

   ________________________  
sin 2 x

     Applying quotient rule.

Therefore,   
dy

 ___ 
dx

   5   
3x 2 sin x 2 x 3 cos x

  ________________ 
sin 2 x

   .
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Method 2 (product rule and chain rule):

  
dy

 ___ 
dx

    5   
d

 ___ 
dx

   (   x 3

 ____ 
sin x

   )  5   
d

 ___ 
dx

  [x 3  (sin x)21] Rewriting as a product.

 5 x 3    d ___ 
dx

  [(sin x)21] 1 (sin x)21    d ___ 
dx

  (x 3) Applying product rule.

 5 x 3[2(sin x)22 cos x] 1 (sin x)21(3x 2)

 5 (sin x)22[2x 3 cos x 1 3x 2 sin x]  Factor out common factor of 

(sin x)22.

Therefore,   
dy

 ___ 
dx

   5   
3x 2 sin x 2 x 3 cos x

  ________________ 
sin 2 x

   .

c)   
dy

 ___ 
dx

   5   
d

 ___ 
dx

  [x 2 tan(3x)] 5 x 2    
d

 ___ 
dx

  (tan(3x)) 1 tan(3x)    
d

 ___ 
dx

  (x 2)

 5 x 2    d ___ 
dx

  (tan(3x)) 1 tan(3x)    d ___ 
dx

  (x 2) Applying product rule.

 5 x 2(3 sec2(3x)) 1 (tan(3x))(2x)  Applying chain rule for

  d ___ 
dx    (tan(3x)).

 5 3x 2 sec2(3x) 1 2x tan(3x)

d)   
dy

 ___ 
dx

   5   
d

 ___ 
dx

  [sec2(3x)] 5   
d

 ___ 
dx

  [(sec(3x))2]

 5 2 sec(3x)    d ___ 
dx

  (sec(3x)) Applying chain rule 1st time.

 5 2 sec(3x)  (sec(3x)tan(3x)    d ___ 
dx

  (3x)) Applying chain rule 2nd time.

 5 2 sec(3x)  (sec(3x)tan(3x)  3)

 5 6 sec2(3x)tan(3x) Equivalent to   
6 sin (3x )

 ________ 
cos3 (3x )

  .

Example 10 
The motion of a particle moving along a straight line for the interval  
0 < t < 12 (t in seconds) is given by the function s(t) 5 sin (   t __ 

2
   )  2 cos (   t __ 

2
   )  1 1, 

where s is the particle’s displacement in centimetres from the origin O. The 
particle’s displacement is negative when left of O and positive when right 
of O.

a) Find the exact time and displacement when the particle is (i) furthest to 
the right and (ii) furthest to the left during the interval 0 , t , 12.

b) Find the particle’s maximum speed to the right exactly and at what 
exact time it occurs.

Solution

For part a) displacement can only be a maximum or minimum when 
velocity is zero, i.e. v(t) 5 0. Similarly for part b) velocity can only be a 
maximum or minimum when acceleration is zero, i.e. a(t) 5 0. So we 
begin by finding the first and second derivatives of s(t) giving us the 
velocity function, v(t), and acceleration function, a(t), respectively.
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a) v(t) 5 s9(t) 5   d ___ 
dx

   [ sin (   t __ 
2

   )  2 cos (   t __ 
2

   )  1 1 ]  5   1 __ 
2

   cos (   t __ 
2

   )  1   1 __ 
2

   sin (   t __ 
2

   ) 

Solve   1 __ 
2

   cos (   t __ 
2

   )  1   1 __ 
2

   sin (   t __ 
2

   )  5 0:

 sin (   t __ 
2

   )  5 2cos (   t __ 
2

   ) 

  
sin (   t __ 

2
   ) 
 _______ 

cos (   t __ 
2

   )  
    5 tan (   t __ 

2
   )  5 21 Given that cos  (   t __ 2   )   0.

 tan (   t __ 
2

   )  5 21 when   t __ 
2

   5   3p ___ 4   1 k  p, k  핑

Thus, t 5   3p ___ 
2

   1 k  2p, k  핑. For 0 , t , 12, t 5   3p ___ 
2

   or t 5   7p ___ 
2

  .

 (i)  Checking the sign (direction) of the particle’s velocity just before 
and after these two times will show if they are maximum or

  minimum values. Test values are t 5 p and 2p for t 5   3p ___ 
2

  .

v(p) 5   1 __ 
2

   cos (   p __ 
2

   )  1   1 __ 
2

   sin (   p __ 
2

    ) 5 0 1   1 __ 
2

    1 5   1 __ 
2

   . 0 ⇒ displacement

increasing before t 5   3p ___ 
2

  

v(2p) 5   1 __ 
2

   cos (   2p ___ 
2

   )  1   1 __ 
2

   sin (   2p ___ 
2

   )  5   1 __ 
2

  (21) 1 0 , 0 ⇒ displacement

decreasing before t 5   3p ___ 
2

  

Hence, s (   3p ___ 
2

   )  5 sin (   3p ___ 4    ) 2 cos (   3p ___ 4   )  1 1 5     
√

__
 2   ___ 

2
   2  ( 2     

√
__

 2   ___ 
2

   )  1 1 

5 1 1   √
__

 2   is a maximum.

Therefore, the particle is furthest to the right (maximum

displacement) at t 5   3p ___ 
2

  
 
seconds when its displacement is 

1 1   √
__

 2   cm.

 (ii) Test values are t 5 3p and 4p for t 5   7p ___ 
2

  .

v(3p) 5   1 __ 
2

   cos (   3p ___ 
2

   )  1   1 __ 
2

   sin (   3p ___ 
2

    ) 5 0 1   1 __ 
2

  (21) , 0 ⇒ displacement

decreasing before t 5   7p ___ 
2

  

v(4p) 5   1 __ 
2

   cos(2p) 1   1 __ 
2

   sin(2p) 5   1 __ 
2

  (1) 1 0 . 0 ⇒ displacement

increasing after t 5   7p ___ 
2

  

Hence, s (   7p ___ 
2

    ) 5 sin (   7p ___ 4    ) 2 cos (   7p ___ 4   )  1 1 5 2     
√

__
 2   ___ 

2
   2  (     √

__
 2   ___ 

2
   )  1 

1 5 1 2   √
__

 2   is a minimum.

Therefore, the particle is furthest to the left (minimum

displacement) at t 5   7p ___ 
2

   seconds when its displacement is 

1 2   √
__

 2   cm.
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b) a(t) 5 v9(t) 5   d ___ 
dx

   [   1 __ 
2

   cos (   t __ 
2

   )  1   1 __ 
2

   sin (   t __ 
2

   )  ]  5 2   1 __ 4   sin (   t __ 
2

   )  1   1 __ 4   cos (   t __ 
2

   ) 

Solve   1 __ 4   cos (   t __ 
2

   )  2   1 __ 4   sin (   t __ 
2

   )  5 0:

 sin (   t __ 
2

   )  5 cos (   t __ 
2

   ) 

  
sin (   t __ 

2
   ) 
 ______ 

cos (   t __ 
2

   ) 
    5 tan (   t __ 

2
   )  5 1 Given that cos (   t _ 

2
   )   0.

 tan (   t __ 
2

   )  5 1 when   t __ 
2

   5   p __ 4   1 k  p, k  핑

Thus, t 5   p __ 
2

   1 k  2p, k  핑. For 0 , t , 12, t 5   p __ 
2

   or t 5   5p ___ 
2

  .

To find maximum velocity (moving right, speed . 0), let’s evaluate the 
velocity at all critical points, i.e. at endpoints for the time interval, t 5 0 
and t 5 12, and where the acceleration is zero, t 5   p __ 

2
   and t 5   5p ___ 

2
  .

  v(0) 5   1 __ 
2

   cos(0) 1   1 __ 
2

   sin(0) 5   1 __ 
2

  

 v (   p __ 
2

   )  5   1 __ 
2

   cos (   p __ 4    ) 1   1 __ 
2

   sin (   p __ 4   )  5     
√

__
 2   ___ 4   1     

√
__

 2   ___ 4   5     
√

__
 2   ___ 

2
    0.707

v (   5p ___ 
2

    ) 5   1 __ 
2

   cos (   5p ___ 4   )  1   1 __ 
2

   sin (   5p ___ 4   )  5 2     
√

__
 2   ___ 4   2     

√
__

 2   ___ 4   5 2     
√

__
 2   ___ 

2
    20.707

  v(12) 5   1 __ 
2

   cos(6) 1   1 __ 
2

   sin(6)  20.424

Therefore, the particle has a maximum velocity of     
√

__
 2   ___ 

2
   cm/sec when t 5   p __ 

2
   

seconds.

A graph of the displacement function s(t) 5 sin (   t __ 
2

   )  2 cos (   t __ 
2

   )  1 1 gives a 
good visual confirmation of our results.

Derivatives of exponential functions

Let’s review some important facts about exponential functions in general. 
An exponential function with base b is defined as f (x) 5 b x, b . 0 and 
b  1. The graph of f passes through (0, 1), has the x-axis as a horizontal 
asymptote, and, depending on the value of the base of the exponential 
function b, will either be a continually increasing exponential growth 
curve (Figure 15.8) or a continually decreasing exponential decay curve 
(Figure 15.9).

x

s(t) � 1 � sin      � cos(   )

y

O

1

�1

2maximum velocity
(slope of s(t) curve)

3

2 4 6 8 10
, 1 �    2

12

t
2 (   )t2

(                    )7π
2

π
2

, 1 �    2(                    )3π
2
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In Chapter 5 we learned that the exponential function e x, sometimes 
written as ‘exp x’, is a particularly important function for modelling 
exponential growth and decay. The number e was defined in Section 5.3 as 

the limit of   ( 1 1   1 __ 
x
   )  

x

  as x  →  . Although the method was not successful in

coming up with a conjecture for the derivative of the tangent function, let’s 
try to guess the derivative of e x by having our GDC graph its derivative.

The graph of the derivative of e x appears to be identical to e x itself! This is 
a very interesting result, but one which we will see fits in exactly with the 
nature of exponential growth/decay.

Let’s try to apply the limit definition of the derivative to provide a formal 
justification.

  d ___ 
dx

  (e x)5   lim    
h → 0

   e
 x1h 2 e x

 ________ 
h

    Applying limit definition f 9(x) 5   lim    
h → 0

   
f (x 1 h) 2 f (x)

 ___________ h  .

  5   lim    
h → 0

   e
 x  e h 2 e x

 _________ 
h

    Reverse of law of exponents: am  an 5 am 1 n.

  5   lim    
h → 0

   
e x(e h 2 1)

 _________ 
h

    Factorizing.

  5   lim    
h → 0

 e x    lim    
h → 0

   
(e h 21)

 _______ 
h

    Applying properties of limits.

 5 e x    lim    
h → 0

   e
 h 2 1 ______ 

h
     e x is not affected by the value of h.

x

y

O

(0, 1)

x

y

O

(0, 1)

 Hint: You may be tempted to 
find the derivative of e x by applying 
the rule for differentiating

powers   d ___ 
dx  (x n) 5 nx n 21 but this

only applies if a variable is raised to 
a constant power. An exponential 
function, such as y 5 e x, is a 
constant raised to a variable power, 
so the power rule does not apply.

Figure 15.9Figure 15.8

 as x  →  , f (x)  →   as x → , f (x) → 0

  f is an increasing function f is a decreasing function

 exponential growth curve exponential decay curve

Plot1

Y1= e (̂ X)
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

Plot1

Y1= e (̂ X)
Plot2 Plot3

Y2= nDeriv(Y1,X,

Y3=
Y4=
Y5=
Y6=

WINDOW
Xmin=-2
Xmax=2
Xscl=1
Ymin=–.5
Ymax=7
Yscl=1
Xres=1

X)
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A closer look at the limit that is multiplying e x reveals that it is equivalent

to the slope of the graph of y 5 e x at x 5 0:   lim    
h → 0

   e
 0 1 h 2 e 0

 ________ 
h

    5   lim    
h → 0

   e
 h 2 1 ______ 

h
   .

To finish our differentiation of e x by first principles, we need to evaluate 
this limit. It is beyond the scope of this course to give a formal algebraic 
proof for the limit. Nevertheless, we can provide a convincing

informal justification by evaluating the expression   e
 h 2 1 ______ 

h
    for values of h

approaching zero, as shown in the table.

h   e
 h 2 1 ______ 

h
   

0.1 1.051 709 181

0.01 1.005 016 708

0.0001 1.000 050 002

0.000 001 1.000 000 005

Thus,   lim    
h → 0

   e
 h 2 1 ______ 

h
    5 1 and we can complete our algebraic work for the 

derivative of e x.

  d ___ 
dx

  (e x) 5 e x    lim    
h → 0

   e
 h 2 1 ______ 

h
    5 e x  1 5 e x

The derivative of the exponential function is the exponential function. 
More precisely, the slope of the graph of f (x) 5 e x at any point (x, e x) is 
equal to the y-coordinate of the point.

The derivative of the exponential function

If f (x) 5 e x, then f 9(x) 5 e x. Or, in Leibniz notation,   d ___ 
dx  (e x) 5 e x.

Example 11 
Differentiate each of the following functions.

a) y 5 e 2x 1 ln x b) y 5   √
_______

 x 2 1 e 4x   c) y 5   e
 x 2 e2x

 _______ e x 1 e2x  

Solution

a) Because e 2x 1 ln x 5 e 2xeln x and eln x 5 x, then e 2x 1 ln x 5 xe 2x.

  
dy

 ___ 
dx

   5   
d

 ___ 
dx

  (e 2x 1 lnx) 5   
d

 ___ 
dx

  (xe 2x)

 5 x    d ___ 
dx

  (e 2x) 1 e 2x    d ___ 
dx

  (x) Applying the product rule.

Therefore,   
dy

 ___ 
dx

   5 2xe 2x 1 e 2x.

b)   
dy

 ___ 
dx

   5   
d

 ___ 
dx

  (  √
_______

 x 2 1 e 4x  ) 5   
d

 ___ 
dx

   [ (x 2 1 e 4x )   
1
 _ 2    ] 

 5   1 __ 
2

  (x 2 1 e 4x ) 
2   1 _ 2       d ___ 

dx
  (x 2 1 e 4x)  Applying power rule and chain rule.

 5   2x 1 4e 4x
 _________ 

2  √
_______

 x 2 1 e 4x  
  

Therefore,   
dy

 ___ 
dx

   5   x 1 2e 4x
 ________ 

  √
_______

 x 2 1 e 4x  
   .
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c)   dy ___ 
dx

   5   
d ___ 

dx
    (   e x 2 e2x

 _______ 
e x 1 e2x

   ) 

 5   
(e x 1 e2x)    d ___ 

dx
  (e x 2 e2x) 2 (e x 2 e2x)    d ___ 

dx
  (e x 1 e 2x)

    ___________________________________________   
(e x 1 e2x)2

        Quotient rule.

 5   
(e x 1 e2x)(e x 1 e2x) 2 (e x 2 e2x)(e x 2 e2x)    ___________________________________   

(e x 1 e2x)2
  

 5   
(e 2x 1 2e xe2x 1 e22x) 2 (e 2x 2 2e xe2x 1 e22x)    _____________________________________   

(e x 1 e2x)2
   

 5   4e xe2x
 _________ 

(e x 1 e2x)2
  

Therefore,   
dy

 ___ 
dx

   5   4 _________ 
(e x 1 e2x)2   .

What about exponential functions with bases other than e? We now 
differentiate the general exponential function f (x) 5 b x, b > 1, b  0, 
repeating the same steps we did with f (x) 5 e x.

  d ___ 
dx

  (b x) 5   lim    
h → 0

   b
 x 1 h 2 b x

 _________ 
h

    Definition of derivative.

  5  lim    
h → 0

    b
 x  bh 2 b x

 __________ 
h

    Reverse of a m  a n 5 a m 1 n.

  5  lim    
h → 0

    
b x(bh 2 1)

 _________ 
h

    Factorizing.

  5 b x    lim    
h → 0

   b
h 2 1 ______ 

h
    b x is not affected by the value of h.

As with e x,   lim    
h → 0

   b
h 2 1 ______ 

h
    is equivalent to the slope of the graph of f (x) 5 b x

at x 5 0, i.e. f 9(0). Therefore, the derivative of the general exponential 
function f (x) 5 b x is b x  f 9(0). Although the value of f 9(0) will be a constant, 
it will depend on the value of the base b.

Application of the chain rule gives us the means to determine the value of 
f 9(0) in terms of b for the function f (x) 5 b x. We can then state the rule for 
the derivative of the general exponential function f (x) 5 b x.

We can use the laws of logarithms to write b x in terms of e x. Recall from 
Section 5.5 that b logb x 5 x, and if b 5 e then e ln x 5 x. Hence, b x 5 e x  ln b 
because e x  ln b 5 e ln(b x) 5 b x. We can now find the derivative of b x by applying 
the chain rule to its equivalent expression e x  ln b.

y 5 f (g (x)) 5 e x  ln b  ⇒ ‘outside’ function is f (u) 5 eu 

f 9(u) 5 e u  ⇒ ‘inside’ function is g (x) 5 x ln b

g9(x) 5 ln b [ln b is a constant]

  
dy

 ___ 
dx

   5 f (g (x))  g9(x) 5 e x   ln  b  ln b

   
dy

 ___ 
dx

   5 b x ln b

Therefore,   d ___ 
dx

  (b x) 5 b x ln b.

This result agrees with the fact that   d ___ 
dx

  (e x) 5 e x. Using this ‘new’ general

rule,   d ___ 
dx

  (b x) 5 b x ln b, then   d ___ 
dx

  (e x) 5 e x ln e. Since ln e 5 1 then   d ___ 
dx

  (e x) 5 e x.
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The derivative of the general exponential function

For b . 0 and b  1, if f (x) 5 b x, then f 9(x) 5 b x ln b. Or, in Leibniz notation,

   d ___ 
dx  (b x) 5 b x ln b.

Earlier we established that the derivative of the general exponential 
function f (x) 5 b x is b x  f 9(0), where f 9(0) is the slope of the graph at 
x 5 0. From our result above, we can see that for a specific base b the slope 
of the curve y 5 b x when x 5 0 is ln b because b0 ln b 5 ln b. The first GDC 
screen image below shows the value of f 9(0) for b 5 2, 3 and   1 _ 2  . Evaluating 
ln 2, ln 3 and ln(  1 _ 2  ) confirms that f 9(0) is equal to ln b.

Example 12 
Find the equation of the line tangent to the curve y 5 2x at the point 
where x 5 3. Express the equation of the line exactly in the form 
y 5 mx  1  c.

Solution

We first find the derivative of y 5 2x and then evaluate it at x 5 3 to get the 
slope of the tangent.

y9 5   d ___ 
dx

  (2x) 5 2x(ln 2) ⇒ y9(3) 5 23(ln 2) 5 8 ln 2 5 ln 28 

5 ln 256 ⇒ m 5 ln 256

Finding the y-coordinate of the tangent point, y(3) 5 23 5 8 ⇒ point 
is (3, 8)

Substituting into the point-slope form for a linear equation, gives

y 2 y1 5 m(x 2 x1) ⇒ y 2 8 5 ln 256(x 2 3)

Therefore, the equation of the tangent line is y 5 (ln 256)x 1 8 2 3 ln 256.

The GDC images below nicely confirm the result.

 Hint: Be careful to distinguish 
between the power rule, 

  d ___ 
dx  (x n) 5 nx n 21, where the base 

is a variable and the exponent 
is a constant, and the rule for 
differentiating exponential 

functions,   d ___ 
dx  (b x) 5 b x ln b, where 

the base is a constant and the 
exponent is a variable.

nDeriv

nDeriv
.6931472361

-.6931472361

1.09861251

(2^X,X,0) ln(2)
.6931471806
1.098612289

-.6931471806

ln(3)
ln(1 2)

(3^X,X,0)
nDeriv
,0)

((1 2)^X,X

WINDOW Y1=2^X

X=3 Y=8

Xmin=-1
Xmax=5
Xscl=1
Ymin=–5
Ymax=20
Yscl=5
Xres=1

Plot1 Plot2 Plot3

Y1=2^XY2=

Y3=
(ln(256))X+8

–3ln(256)

Y4=
Y5=
Y6=
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Example 13 
Find the coordinates of the point P lying on the graph of y 5 5x such that 
the line tangent to the curve at P passes through the origin.

Solution

Let P 5 (x 0, y 0) be a point on the graph of y 5 5x. Since   
dy

 ___ 
dx

   5 5x (ln 5)

the slope of the tangent line to the curve at P is given by   
dy

 ___ 
dx

   5 5x 0(ln 5).

Substituting into the point-slope form for a linear equation gives,

y 2 y 0 5 5x 0(ln 5)(x 2 x 0)

If the line passes through the origin then (0, 0) must satisfy the equation.

0 2 y 0 5 5x 0(ln 5)(0 2 x 0) ⇒ 2y 0 5 5x 0(ln 5)(2x 0)

But y 0 5 5x 0, so 25x 0 5 5x 0(ln 5)(2x 0) ⇒ x 0 5   5x 0
 ______ 

5x 0 ln 5
   5   1 ____ 

ln 5
  .

Then y 0 5  5   
1
 ___ 

ln 5
    ⇒ (y 0)

ln 5 5   (  5   
1
 ___ 

ln 5
    )  

ln  5

  ⇒ (y 0)
ln 5 5 5 ⇒ y 0 5 e because e ln x 5 x.

Therefore, the point P on the graph of y 5 5x has coordinates  (   1 ____ 
ln 5

  , e ) .

As a check let’s find the equation of the tangent to y 5 5x at this point.

Since   
dy

 ___ 
dx

   5 5x 0(ln 5) the slope is  5   
1
 ___ 

ln 5
   (ln 5), but we showed above that 

 5   
1
 ___ 

ln 5
    5 e. So the slope is equivalent to e ln 5. Substituting in the point-slope

form gives y 2 e 5 e ln 5 ( x 2   1 ____ 
ln 5

   )  ⇒ y 5 e(ln 5)x. Clearly this line passes 
through (0, 0).

Plot1 Plot2 Plot3
Y1=5^XY2=e(ln(5))X

X=1 ln(5)

Y1=5^X

Y3=
Y4=
Y5=
Y6=
Y7= X=.62133493 Y=2.7182818

Y1=5^X

If f (x) 5 b x, then f 9(x) 5 b x  f 9(0). The value of f 9(0) is the slope of the graph of 
f (x) 5 b x at the point (0, 1). Hence, this will be a particular constant for each value 
of b (b . 1, b  0). Therefore, if f (x) 5 b x, then f 9(x) 5 kb x where k is a constant 
dependent on the value of b. If the amount of a quantity y at a time t is given by

y 5 bt then   
dy

 ___ 
dt

   5 kbt 5 ky. In other words, the rate of change of the quantity y at

time t is proportional to the amount of y at time t. This is the essential behaviour of 
exponential growth/decay. It is because of this property that exponential functions 
have so many applications to real-life phenomena. Here are some good examples:
1 The rate of population growth for many living organisms is proportional to the

 size of the population p:   
dp

 ___ 
dt

   5 kp.

2 The rate at which a radioactive substance decays is proportional to the amount A

 of the substance present:   dA ___ 
dt

   5 kA. 

3 Newton’s law of cooling states that if a substance is placed in cooler surroundings 
then its temperature decreases at a rate proportional to the temperature 
difference T between the temperature of the substance and the

 temperature of its surroundings:   dT ___ 
dt

   5 kT.
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 1 Find the derivative of each function.

a) y 5 x 2e x b) y 5 8x c) y 5 tan e x

d) y 5   x ________ 
1 1cos x   e) y 5   e

 x
 __ x   f ) y 5   1 _ 3   sec3 2x 2 sec 2x

g) y 5 42x h) y 5 cos x tan x i) y 5   x ______ 
e x 2 1

  

j) y 5 4 cos(sin 3x) k) y 5 2x11 l) y 5   1 ___________ csc x 2 sec x  

 2 Find the equation of the line tangent to the given curve at the specified value of 
x. Express the equation exactly in the form y 5 mx 1 c.

a) y 5 sin x x 5   p __ 3  

b) y 5 x 1 e x x 5   p __ 3  

c) y 5 4 tan 2x x 5   p __ 8  

 3 Consider the function g (x) 5 x 1 2 cos x. For the interval 0 < x < 2p.

a) find the exact x-coordinates of any stationary points

b) determine whether each stationary point is a maximum, minimum or neither 
and give a brief explanation.

 4 Find the coordinates of any stationary points on the curve y 5 x 2 e x. Classify 
any such points as a maximum, minimum or neither and explain.

 5 Find the coordinates of any stationary points for each function on the interval 
0 < x < 2p. Indicate whether a stationary point is a maximum, minimum or 
neither.

a) f (x) 5 4 sin x 2 cos 2x b) g (x) 5 tan x(tan x 1 2)

 6 Find the equation of the normal line to the curve y 5 3 1 sin x at the point 
where x 5   p __ 2  .

 7 Consider the function f (x) 5 e x 2 x 3.

a) Find f 9(x) and f (x).

b) Find the x-coordinates (accurate to three significant figures) for any points 
where f 9(x) 5 0.

c) Indicate the intervals for which f (x) is increasing, and indicate the intervals for 
which f (x) is decreasing.

d) For the values of x found in part b), state whether that point on the graph of f 
is a maximum, minimum or neither.

e) Find the x-coordinate of any inflexion point(s) for the graph of f.

f ) Indicate the intervals for which f (x) is concave up, and indicate the intervals 
for which f (x) is concave down.

 8 Show that the curves y 5 e2x and y 5 e2x cos x are tangent at each point

 common to both curves. Sketch the two curves over the interval 2   p __ 2   < x <   3p ___ 2  .

 9 A particle moves in a straight line such that its displacement, s metres, is given by 
s(t) 5 4 cos t 2 cos 2t. If the particle comes to rest after T seconds, where T . 0, 
find:

a) the particle’s acceleration at time T

b) the maximum speed of the particle for 0 , t , T.

10 Find an equation for a line that is tangent to the graph of y 5 e x that passes 
through the origin.

Exercise 15.2
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 15.3 Implicit differentiation, 
logarithmic functions and inverse 
trigonometric functions

Implicit differentiation
An equation such as 3x 2 2y 2 8 5 0 is said to define y as a function of 
x because it satisfies the definition of a function in that each value of x 
(domain) determines (corresponds to) a unique value of y (range). We 
can manipulate the equation in order to solve for y in terms of x, giving 
y 5   3 _ 2  x 2 4. In this form, in which y is alone on one side of the equation, 
the equation is said to define y explicitly as a function of x. In the original 
form of the equation, x 2 2y 2 8 5 0, the function is said to define y 
implicitly as a function of x. If we wish to find the derivative of y with

respect to x,   
dy

 ___ 
dx

  , from an equation in which y is defined implicitly as a

function of x we can often solve for y and then differentiate using one of

the rules that we have established. For example, if we were asked to find   
dy

 ___ 
dx

  

for the equation xy 5 1 we can write y explicitly as a function of x and then 
differentiate.

xy 5 1 ⇒ y 5   1 __ 
x
   5 x21 ⇒   

dy
 ___ 

dx
   5   

d
 ___ 

dx
  (x21) 5 2x22 5 2   1 __ 

x 2  

Most of the functions that we have encountered thus far can be described 
by expressing one variable explicitly in terms of another variable – for 

11 Consider the exponential function f (x) 5 2x.

a) Find f 9(x).

b) Find the equation of the tangent to the graph of f at the point (0, 1).

c) Explain why the graph of f has no stationary points.

12 Consider the function h(x) 5   x
 2 2 3 ______ 

e x   .

a) Find the exact coordinates of any stationary points.

b) Determine whether each stationary point is a maximum, minimum or neither.

c) What do the function values approach as (i) x →  and (ii) x → 2.

d) Write down the equation of any asymptotes for the graph of h(x).

e) Make an accurate sketch of the curve indicating any extrema and points 
where the graph intersects the x- and y-axis.

13 Given y 5 sin x, and   
dy

 ___ 
dx   5 sin(x 1 a),   

d 2y
 ___ 

dx 2   5 sin(x 1 b) and   
d 3y

 ___ 
dx 3   5 sin(x 1 c), 

find:

a) the values of a, b and c

b) a formula for   
d(n)y

 ____ 
dx(n)  .

14 a) Find the first three derivatives of y 5 xe x.

b) Suggest a formula for   d(n)
 ____ 

dx(n)  (xe x) that is true for all positive integers n.

c) Prove that your formula is true by using mathematical induction.



730

15 Differential Calculus I-- I
-
-: Further Techniques and Applications

example, y 5 cos(2x) or y 5   √
______

 1 2 x 2  . But how do we find the derivative y 
for an equation where we are not able to solve for y explicitly? For example, 
if we have the equation

x 3 1 y 3 2 9xy 5 0 (Figure 15.10)

we cannot solve for y in terms of x. However, there may exist one or more 
functions f such that if y 5 f (x) then the equation

x 3 1 [f (x)]3 2 9x[f (x)] 5 0

holds for all values of x in the domain of f. Hence, the function f is defined 
implicitly by the given equation.

With the assumption that the equation x 3 1 y 3 2 9xy 5 0 defines y as at 
least one differentiable function of x (see Figure 15.11), the derivative

of y with respect to x,   
dy

 ___ 
dx

  , can be found by the technique of implicit

differentiation.

Initially we differentiate term-by-term, with respect to x, obtaining

  d ___ 
dx

  (x 3) 1   d ___ 
dx

  (y 3) 2   d ___ 
dx

  (9xy) 5   d ___ 
dx

  (0).

The first and last terms are easily differentiated, and we can apply the 
constant rule to the third term, giving

3x 2 1   d ___ 
dx

  (y 3) 2 9   d ___ 
dx

  (xy) 5 0.

Differentiating the second and third terms is a little more complicated 
requiring the use of the chain rule (and also product rule for the third 

xO

y

5

5

xO

y

5

5

xO

y

5

5

xO

y

5

5
Figure 15.10 The graph of 
x 3 1 y 3 2 9xy 5 0 (called a folium, 
Latin for ‘leaf’). This type of curve 
was first studied by Rene Descartes 
in 1638.

Figure 15.11 Although the 
equation x 3 1 y 3 2 9xy 5 0 is 
not a function, we can see that 
the graph of the equation can 
be separated into the graphs of 
three separate functions (they 
each pass the vertical line test for 
a function). This demonstrates that 
the equation implicitly defines y as 
three functions of x.
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term). If y is defined implicitly as a function of x, then y 3 is also a (composite) 
function of x. Thus, applying the appropriate rules, we have

3x 2 1 3y 2    d ___ 
dx

  (y) 2 9 ( x    d ___ 
dx

  (y) 1 y    d ___ 
dx

  (x) )  5 0

3x 2 1 3y 2    
dy

 ___ 
dx

   2 9 ( x    
dy

 ___ 
dx

   1 y )  5 0

3x 2 1 3y 2   
dy

 ___ 
dx

   2 9x  
dy

 ___ 
dx

   2 9y 5 0

Now we solve the equation for   
dy

 ___ 
dx

  .

  
dy

 ___ 
dx

  (3y 2 2 9x) 5 23x 2 1 9y ⇒   
dy

 ___ 
dx

   5   
23x 2 1 9y

 _________ 
3y 2 2 9x

   

Therefore,   
dy

 ___ 
dx

   5   
2x 2 1 3y

 ________ 
y 2 2 3x

   .

The process of implicit differentiation has given us a formula for   
dy

 ___ 
dx

   that is

the slope of the curve at any point (except where there is a vertical tangent  
and slope is undefined) and it is in terms of both x and y. This is not 
unexpected since we can see from the graph of the equation (Figure 15.10) 
that it is possible for two or three different points on the curve to have the

same x-coordinate and the slope of the curve (given by   
dy

 ___ 
dx

  ) will depend

on the values of both x and y, and not only x as with functions where y is 
explicitly defined in terms of x.

In the examples and exercises of this section it is assumed that for any given 
equation y is implicitly defined as a differentiable function of x (or more 
than one differentiable function as in the above example) so that the  
technique of implicit differentiation can be applied.

Process of implicit differentiation
1 Differentiate, term-by-term, both sides of the equation with respect to x. The chain 

rule must be applied for any terms containing y.

2 Collect all terms containing   
dy

 ___ 
dx   on one side of the equation and all other terms on 

the other side.

3 Factor out   
dy

 ___ 
dx  .

4 Solve for   
dy

 ___ 
dx   by dividing both sides by the factor multiplying   

dy
 ___ 

dx  .

5 Simplify the result, if possible.

Example 14 
Consider the equation for the unit circle x 2 1 y 2 5 1 which is a relation 
(not a function).
a) Solve for y, and write all equations that express y as a function of x.

 Find   
dy

 ___ 
dx

   for each of these functions.

b) Find   
dy

 ___ 
dx

   by implicit differentiation.

c) Find the equation of the line tangent to the unit circle at the point  ( 2   1 __ 
2

  ,   
  √

__
 3  
 ___ 

2
   ) .



732

15 Differential Calculus I-- I
-
-: Further Techniques and Applications

Solution

a) Solving for y produces two equations, each defining y as a function of x.

x 2 1 y 2 5 1 ⇒ y 2 5 1 2 x 2 ⇒ y 5   √
______

 1 2 x 2   and y 5 2   √
______

 1 2 x 2  

Differentiating each of these with respect to x gives,

  
dy

 ___ 
dx

   5   
d

 ___ 
dx

   (  √
______

 1 2 x 2  ) 5   
d

 ___ 
dx

   [ (1 2 x 2 )   
1
 _ 2    ]  5   1 __ 

2
  (1 2 x 2 ) 2   1 _ 2   (22x) ⇒

  
dy

 ___ 
dx

   5   2x _______ 
  √

______

 1 2 x 2  
  

  
dy

 ___ 
dx

   5   
d

 ___ 
dx

   (2   √
______

 1 2 x 2  ) 5   
d

 ___ 
dx

   [ 2(1 2 x 2 )   
1
 _ 2    ]  

 5 2   1 __ 
2

  (1 2 x 2 ) 2   1 _ 2   (22x) ⇒   
dy

 ___ 
dx

   5   x _______ 
  √

______

 1 2 x 2  
  

For the function y 5   √
______

 1 2 x 2   we have   
dy

 ___ 
dx

   5   2x _______ 
  √

______

 1 2 x 2  
  .

Since y 5   √
______

 1 2 x 2  , then   
dy

 ___ 
dx

   5 2   x __ 
y
  .

For the function y 5 2   √
______

 1 2 x 2   we have   
dy

 ___ 
dx

   5   x _______ 
  √

______

 1 2 x 2  
  .

Since y 5 2   √
______

 1 2 x2  , ⇒ 2y 5   √
______

 1 2 x 2  , then   
dy

 ___ 
dx

   5 2   x __ 
y
  .

b)   d ___ 
dx

  (x 2) 1   d ___ 
dx

  (y 2) 5   d ___ 
dx

  (1) Differentiating both sides term-by-term.

2x 1 2y   
dy

 ___ 
dx

   5 0 Chain rule applied to differentiate y 2.

2y   
dy

 ___ 
dx

   5 2 2x

  
dy

 ___ 
dx

   5    22x _____ 
2y

    Solving for   
dy

 __ dx  .

Therefore,   
dy

 ___ 
dx

   5 2   x __ 
y
  .

c) At the point  ( 2   1 __ 
2

  ,   
  √

__
 3  
 ___ 

2
   )  the slope of the tangent line is   

dy
 ___ 

dx
   5 2 (   2   1 __ 

2
  
 ___ 

  
  √

__
 3  
 ___ 

2
  

   ) 

 5   1 ___ 
  √

__
 3  
   5   

  √
__

 3  
 ___ 

3
  .

Substituting into the point-slope form gives,

y 2   
  √

__
 3  
 ___ 

2
   5   

  √
__

 3  
 ___ 

3
   ( x 1   1 __ 

2
   )  ⇒ y 5   

  √
__

 3  
 ___ 

3
  x 1   

  √
__

 3  
 ___ 

6
   1   

  √
__

 3  
 ___ 

2
   ⇒ y 5   

  √
__

 3  
 ___ 

3
  x 1   

2  √
__

 3  
 ____ 

3
  

We can get a visual check by graphing the unit circle and the tangent 
line on our GDC. In order to graph the complete unit circle on our 
GDC we need to graph both functions found in part a).

 Hint: Example 14 illustrates that 
even when it is possible to solve an 
equation explicitly for y in terms of 
x, it may be more efficient to 

find   
dy

 ___ 
dx   by implicit differentiation.

WINDOW

X=-.5 Y=.8660254

Y1= (1-X2)
Xmin=-3
Xmax=3
Xscl=1
Ymin=–2
Ymax=2
Yscl=1
Xres=1

Plot1 Plot2 Plot3
(1-X2)
(1-X2)

Y1=
Y2=
Y3=

Y4=
Y5=
Y6=

-
(3) 3)X+2(

(3) 3
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Example 15 
a) Find the points on the graph of x 2 1 4xy 1 13y 2 5 9 at which the 

tangent is horizontal.

b) Determine whether each point is a maximum, minimum or neither.

Solution

a) We need to find   
dy

 ___ 
dx

   which we do by implicit differentiation.

  d ___ 
dx

  (x 2) 1 4   d ___ 
dx

  (xy) 1 13   d ___ 
dx

  (y 2) 5   d ___ 
dx

  (9)  Differentiating both
    sides term-by-term.

2x 1 4 ( x    d ___ 
dx

  (y) 1 y    d ___ 
dx

  (x) )  1 13 ( 2y    d ___ 
dx

  (y) )  5 0 Applying chain and
    product rules.

2x 1 4x    
dy

 ___ 
dx

   1 4y 1 26y    
dy

 ___ 
dx

   5 0    Collecting terms

    containing   
dy

 __ dx   on one side.

  
dy

 ___ 
dx

  (4x 1 26y) 5 22x 2 4y    Factor out   
dy

 __ 
dx  .

  
dy

 ___ 
dx

   5   
22x 2 4y

 _________ 
4x 1 26y

   5   
2x 2 2y

 ________ 
2x 1 13y

      Solving for   
dy

 __ dx  .

To find horizontal tangents, solve   
dy

 ___ 
dx

   5 0.

  
2x 2 2y

 ________ 
2x 1 13y

   5 0 ⇒ 2x 2 2y 5 0 ⇒ y 5 2   
x
 __ 

2
  

Of course, there are an infinite number of ordered pairs (x, y) that 
satisfy the equation y 5 2   x __ 

2
  . But the only ordered pairs that we want 

are ones that are on the curve x 2 1 4xy 1 13y 2 5 9. So we substitute

2   x __ 
2

   for y and solve to find x-coordinates of points on the curve

where   
dy

 ___ 
dx

   5 0.

x 2 1 4xy 1 13y 2 5 9 ⇒ x 2 1 4x ( 2   x __ 
2

   )  1 13  ( 2   x __ 
2

   )  
2
  5 9 

x 2 2 2x 2 1   13 ___ 4  x 2 5 9

4x 2 2 8x 2 1 13x 2 5 36 Multiplying both sides by 4.

9x 2 5 36

x 2 5 4 ⇒ x 5 2 or x 5 22

y-coordinates: for x 5 2, y 5 2   2 __ 
2

   5 21; for x 5 22, y 5 2  (   22 ___ 
2

   )  5 1

Therefore, the tangents to the curve at (2, 21) and (22, 1) are 
horizontal.

b) It is very difficult to determine the nature of the points (2, 21) and 
(22, 1) by testing the sign of the derivative to either side of each point.

 Since   
dy

 ___ 
dx

   is in terms of both x and y we need an explicit equation for y in

 terms of x to find the y-coordinate – but no explicit equation for y exists. 
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It is also impossible to graph the curve x 2 1 4xy 1 13y 2 5 9

 on our GDC to see its shape. Let’s find the second derivative,   
d 2y

 ___ 
dx 2  , and

 apply the second derivative test (Section 13.3).

  
d 2y

 ___ 
dx 2   5   d ___ 

dx
   (   2x 2 2y

 ________ 
2x 1 13y

   ) 

  5    
(2x 1 13y) [   d ___ 

dx
  (2x 2 2y) ]  2 (2x 2 2y)[  d ___ 

dx
  (2x 1 13y)]

     _____________________________________________   
(2x 1 13y)2   Applying quotient 

  rule.

 5     
(2x 1 13y)  ( 21 2 2   

dy
 ___ 

dx
   )  1 (x 1 2y)  ( 2 1 13   

dy
 ___ 

dx
   )  
    _________________________________________   

(2x 1 13y)2  

 5 (2x 1 13y) ( 21 2 2 (   2x 2 2y
 ________ 

2x 1 13y
   )  )  1 (x 1 2y) ( 2 1 13 (   2x 2 2y

 ________ 
2x 1 13y

   )  )  Substituting for   
dy

 __ dx   .

 5   
2x 1 13y

 ________ 
2x 1 13y

       
(2x 1 13y) ( 21 1   

2x 1 4y
 ________ 

2x 1 13y
   )  1 (x 1 2y) ( 2 2   

13x 1 26y
 _________ 

2x 1 13y
   ) 
     _______________________________________________   

(2x 1 13y)2  

 5   
(2x 1 13y)(22x 2 13y 1 2x 1 4y) 1 (x 1 2y)(4x 1 26y 2 13x 2 26y)

      __________________________________________________________    
(2x 1 13y)3  

 5   
(2x 1 13y)(29y) 1 (x 1 2y)(29x)

   _____________________________  
(2x 1 13y)3  

   
d 2y

 ___ 
dx 2   5 2   

9x 2 1 36xy 1 117y 2

  _________________  
(2x 1 13y)3   5   

29(x 2 1 4xy 1 13y 2)
  __________________  

(2x 1 13y)3  

Now applying the second derivative test for both points where   
dy

 ___ 
dx

   5 0, we have

for (2, 21),   
d 2y

 ___ 
dx 2   5   

29(22 1 4(2)(21) 1 13(21)2)
   __________________________  

(2(2)2 1 13(21))3   

 5   81 ___ 
125

   . 0 ⇒ (2, 21) is a minimum

for (22, 1),   
d 2y

 ___ 
dx 2   5   

29(22)2 1 4(22)(1) 1 13(1)2)
   __________________________  

(2(22)2 1 13(1))3   

 5 2   3 ___ 
343

   , 0 ⇒ (22, 1) is a maximum

Even though it is not possible to graph the curve  
x 2 1 4xy 1 13y 2 5 9 on our GDC, it is possible to find 
graphing software that can. The graph visually confirms our 
results for parts a) and b) of Example 15.

 

Previously we have established the rules for differentiating trigonometric functions and 
exponential functions. We still need to determine how to differentiate other important non-
algebraic functions, namely logarithmic functions and inverse trigonometric functions.

x

x2 � 4xy � 13y2 � 9

O

y

2 4�2�4

1

2

(�2, 1)

(2, �1)

�2

�1
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Derivatives of logarithmic functions

At the start of the previous section we explored how we can often form a 
strong conjecture for the derivative of a function by analyzing the shape of 
the function’s graph with the aid of some features of our GDC. Let’s take 
this informal approach for finding the derivative for the natural logarithm 
function, y 5 ln x, and then check our conjecture by deriving   d ___ 

dx
  (ln x) by 

means of implicit differentiation.

The graph of y 5 ln x (Figure 15.12) is a particularly straightforward one. 
Its x-intercept is (1, 0), and since its domain is all positive real numbers, 
it has no y-intercept. It is asymptotic to the y-axis, and the graph rises 
steadily, though less steeply as x → . There is neither an upper nor a lower 
bound, so its range is all real numbers.

Let’s cleverly use our GDC to view a graph of y 5 ln x, a graph of its 
derivative, and to construct a table of ordered pairs with x and the value of 
the derivative at x (as computed by the GDC).

In the table, each value in the Y2 column is the slope of the curve 
(derivative) at the particular x value for y 5 ln x. From the graph of the 
derivative and especially from the table, we conjecture that the derivative of 
ln x is   1 __ 

x
  . This agrees with the fact that for x > 0, the slope of the graph of 

y 5 ln x is always positive and as x increases the slope decreases.

The inverse of y 5 ln x is y 5 e x. Knowing this and that   d ___ 
dx

  (e x) 5 e x, we can 
use implicit differentiation to confirm our conjecture.

  y 5 ln x

  e y 5 x Inverse function relationship.

  d ___ 
dx

  (e y) 5   d ___ 
dx

  (x) Differentiate implicitly.

  e y   
dy

 ___ 
dx

   5 1

   
dy

 ___ 
dx

   5   
1

 __ e y  

   
dy

 ___ 
dx

   5   1 __ 
x
   Substituting x for e y.

Therefore,   d ___ 
dx

  (ln x) 5   1 __ 
x
  .

WINDOW
Xmin=0
Xmax=10
Xscl=1
Ymin=–3
Ymax=3
Yscl=1
Xres=1

Plot1 Plot2 Plot3
ln(X)Y1=

Y2=
Y3=
Y4=
Y5=
Y6=
Y7=

Plot1 Plot2 Plot3
ln(X)Y1=

Y2= n   Deriv(Y1,X,
X

ERROR
1
.5
.33333
.25
.2
.16667

X=0

Y2

Y3=
X)

Y4=
Y5=
Y6=

0
1
2
3
4
5
6

y � lnx

O x108642

y

3

2

1

�1

Figure 15.12
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The derivative of the natural logarithm function

If f (x) 5 ln x, then f 9(x) 5   1 __ x  . Or, in Leibniz notation,   d ___ 
dx  (ln x) 5   1 __ x  .

What about the derivative of a logarithmic function with a base, b, other 
than e ; that is, logarithmic functions other than the natural logarithmic 
function?

To find the derivative of logb x with any base (b . 0, b  1), we can use the 
change of base formula (Section 5.4) for logarithms to express logb x in terms 
of the natural logarithm, ln x, and then differentiate.

 logb x 5   ln x ___ 
ln b

    Applying change of base formula.

  d ___ 
dx

  (logb x) 5   d ___ 
dx

   (   ln x ___ 
ln b

   )  5   d ___ 
dx

   (   1 ___ 
ln b

    ln x )  Differentiating both sides.

    5   1 ___ 
ln b

      d ___ 
dx

  (ln x)   1 ____ ln b   is a constant.

    5   1 ___ 
ln b

      1 __ 
x
  

Therefore,   d ___ 
dx

  (logb x) 5   1 _____ 
x ln b

  .

The derivative of the general logarithm function

If f (x) 5 logb x (b . 0, b  1), then f 9(x) 5   1 _____ x ln b
  . Or, in Leibniz notation, 

  d ___ 
dx  (logb x) 5   1 _____ x ln b

  .

Example 16 

a) Given g (x) 5   1 1 x _____ 
1 2 x

  , find g9(x).

b) Hence, find f 9(x) for f (x) 5 ln (   1 1 x _____ 
1 2 x

   ) .

c) (i) Show that f (x) is an odd function.
(ii) Show that f (x) has no stationary points.

(iii) Show that f (x) has one point of inflexion, and give its coordinates.

It is interesting to note that that the derivative of the non-algebraic function 
f (x) 5 ln x is the algebraic function f 9(x) 5   1 __ x  . Non-algebraic functions, such

as trigonometric, exponential and logarithmic functions are often referred to 
as ‘transcendental’ functions. A transcendental function is a function that is 
not algebraic – in other words, it cannot be composed of a finite number of 
the elementary operations of addition, subtraction, multiplication, division and 
extracting a root. A transcendental number is a real number that is not a root 
of any polynomial equation with rational coefficients. For example, p and e are 
transcendental numbers.
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Solution

a) g9(x) 5   
(1 2 x)  d ___ 

dx
  (1 1 x) 2 (1 1 x)   d ___ 

dx
  (1 2 x)
   ________________________________  

(1 2 x)2   Applying quotient rule.

  5   1 2 x + 1 1 x  ____________ 
(1 2 x)2  

  g9(x) 5   2 _______ 
(1 2 x)2  

b) f 9(x) 5   d ___ 
dx

   [ ln (   1 1 x _____ 
1 2 x

   )  ]  5   1 _____ 
  1 1 x _____ 
1 2 x

  
      d ___ 

dx
    (   1 1 x _____ 

1 2 x
   )  Applying   d __ dx  (ln x) 5   1 __ 

x
   and 

     chain rule.

  5  (   1 2 x _____ 
1 1 x

   )  (   2 _______ 
(1 2 x)2   )  Substituting result from 

    part a).

  5   1 _____ 
1 1 x

      2 _____ 
1 2 x

  

 f 9(x) 5   2 ______ 
1 2 x 2  

c) (i) In Section 7.3 we stated that a function f is odd if, for each x in 
the domain of f, f (2x) 5 2f (x) with its graph symmetric about 
the origin. This symmetry leads to the fact (see question 25 in 
Exercise 13.2) that the graph of the derivative of an odd function 
is symmetric about the y-axis, i.e. an even function. A function f is 
even if f (2x) 5 f (x). Thus, it will suffice to show that f 9(x) is even 

  in order to show that f (x) is odd. 

  f 9(2x) 5   2 _________ 
1 2 (2x)2   5   2 ______ 

1 2 x 2   5 f (x)

  Therefore, f 9(x) is even and it follows that f (x) is odd.

(ii) A stationary point for a function can only occur where its 
derivative is zero.

Clearly, f 9(x) 5   2 ______ 
1 2 x 2    0 because a rational expression can

only equal zero when its numerator is zero. Therefore, f (x) has no 
stationary points.

(iii) To find any inflexion points we start by finding where the second 
derivative is zero.

f (x) 5   d ___ 
dx

   (   2 ______ 
1 2 x 2   )  5 2  d ___ 

dx
  [(1 2 x 2)21]  Power and chain rules instead 

      of quotient rule.

 5 2[2(1 2 x 2)22(22x)]

 5 f (x) 5   4x ________ 
(1 2 x 2)2   5 0 when x 5 0

To confirm that an inflexion point does occur at x 5 0 we need to 
show that the concavity of the graph of f changes at x 5 0 (f (x) 
changes sign). Because f (x) is defined only for 21 , x , 1, we 
choose x 5 2   1 _ 2   and x 5   1 _ 2  

 
as test points.
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 f  ( 2   1 __ 
2

   )  5   
4 ( 2   1 __ 

2
   ) 
 ____________  

  ( 1 2   ( 2   1 __ 
2

   )  
2
  )  

2

 
   5 2   32 ___ 

9
   , 0 and 

f  (   1 __ 
2

   )  5   
4 (   1 __ 

2
   ) 
 ___________ 

  ( 1 2   (   1 __ 
2

   )  
2
  )  

2

 
    5   32 ___ 

9
   . 0 

Since f (x) changes sign (and f (x) changes concavity) at x 5 0, f has 

an inflexion point there. f (0) 5 ln (   1 1 0 _____ 
1 2 0

   )  5 ln(1) 5 0. Therefore,  

the inflexion point is at (0, 0). (See GDC images below).

Example 17 
Find the equation of the line tangent to the graph of y 5 log10(x 3) at 
the point x 5 4. Express the equation exactly with any logarithms being 
expressed as natural logarithms.

Solution

   
dy

 ___ 
dx

   5   
d

 ___ 
dx

  [log10(x 3)] 5   1 _______ 
x 3 ln 10

      d ___ 
dx

  (x 3) Applying   d __ 
dx   (logb x) 5   1 ____ x ln b

   and chain rule.

    5   1 _______ 
x 3 ln 10

    3x 2

                              dy ___ 
dx

    5   3 ______ 
x ln 10

  

[Alternatively, we could have used laws of logarithms to write 

y 5 log10(x 3) 5 3 log10 x and then   
dy

 ___ 
dx

   5 3  
d

 ___ 
dx

  (log10 x) 5   3 ______ 
x ln 10

  , avoiding use 

of the chain rule.]

When x 5 4,   
dy

 ___ 
dx

   5   3 ______ 
4 ln 10

   and y 5 log10(43) 5 log10 64 5   ln 64 ____ 
ln 10

   (using

change of base formula). Thus, the tangent line intersects the curve at the

point  ( 4,   ln 64 ____ 
ln 10

   )  and has a slope of   3 ______ 
4 ln 10

  . Substituting into the point-slope

form for a linear equation gives:

y 2   ln 64 ____ 
ln 10

   5   3 ______ 
4 ln 10

  (x 2 4)    ⇒    y 5   3x ______ 
4 ln 10

   2   3 ____ 
ln 10

   1   ln 64 ____ 
ln 10

      ⇒

y 5   3x ______ 
4 ln 10

   1   23 1 ln 64 __________ 
ln 10

  

Plot1 Plot2 Plot3

ln((1+X) (1-
X))
Y1=

Y2=
Y3=
Y4=
Y5=
Y6=

WINDOW
Xmin=-1.25
Xmax=1.25
Xscl=1
Ymin=–6
Ymax=6
Yscl=1
Xres=1
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Graphing the curve y 5 log10(x 3) and the computed tangent line appears 
to give a good visual confirmation that the equation of the tangent line is 
correct.

Derivatives of inverse trigonometric functions
In the preceding pages, we established that the derivative of the non-
algebraic (transcendental) function f (x) 5 ln x is the algebraic function 
f 9(x) 5   1 __ x  . The same is true for the inverse trigonometric functions – 
they are transcendental but their derivatives are algebraic. The inverse 
trigonometric functions were discussed in Section 7.6. We will now use 
implicit differentiation to find the derivatives of the inverse functions for 
sine, cosine, and tangent functions – which are usually referred to as  
arcsin x, arccos x and arctan x respectively. Their graphs are shown again in 
Figure 15.13.

Given the smooth shape of their graphs we will assume that the functions 
y 5 arcsin x, y 5 arccos x and y 5 arctan x are differentiable (i.e. the 
derivative exists) except where a vertical tangent exists. Since y 5 arcsin x 
and y 5 arccos x have vertical tangents at x 5 21 and x 5 1 they are 
differentiable throughout the interval 21 , x , 1. y 5 arctan x is 
differentiable for all real numbers.

Recall the definition of the arcsine function,

y 5 arcsin x ⇒ sin y 5 x for 2   p __ 
2

   < y <   p __ 
2

  .

Differentiating sin y 5 x implicitly with respect to x gives:

   d ___ 
dx

  (sin y) 5   d ___ 
dx

  (x) Differentiating both sides.

(cos y)   
dy

 ___ 
dx

   5 1 Implicit differentiation.

   
dy

 ___ 
dx

   5   1 ____ cos y   Dividing by cos y.

That is,   d ___ 
dx

  (arcsin x) 5   1 ____ cos y   .

Plot1 Y1=log(X^3)

X=4 Y=1.80618

Plot2 Plot3
Y1=log(X^3)
Y2=(3 (4ln(10))

Y3=
Y4=
Y5=

X+(-3+ln(64)) ln
(10)

Intersection
X=4.0000035 Y=1.8061811

xO

y

y � arcsin x

y � arccos x y � arctan x

xO

π

x

y

O

�1

�

�

1

�1 1

�3 �2 �1 1 2 3

π
2

π
2

π
2

y
π
2

π
2

 Hint: Recall from Chapter 7 that 
the notations y 5 arcsin x and 
y 5 sin 21 x are synonymous, but we 
will generally use y 5 arcsin x.

Figure 15.13



740

15 Differential Calculus I-- I
-
-: Further Techniques and Applications

Dividing by cos y in the last step is allowed because cos y  0 for 

the interval in which y 5 arcsin x is differentiable, i.e. 2   p __ 
2

   , y ,   p __ 
2

   

(quadrants I and IV). In fact, cos y . 0 for 2   p __ 
2

   , y ,   p __ 
2

  . From the identity 

sin 2 x 1 cos2 x 5 1 we have cos x 5 6  
 
 √
________

 1 2sin 2 x  . Since cos y . 0 we can

replace cos y with   √
_________

 1 2 sin 2 y   and because sin y 5 x we get cos y 5   √
______

 1 2 x 2  .

Therefore,   d ___ 
dx

  (arcsin x) 5   1 _______ 
  √

______

 1 2 x 2  
   .

We can apply a similar process to find the derivative of the arcos x 
function, obtaining the result

  d ___ 
dx

  (arccos x) 5 2   1 _______ 
  √

______

 1 2 x 2  
   .

Although the domain for the inverse sine and inverse cosine functions is 
the fairly narrow closed interval 21 < x < 1 and they are differentiable on 
the open interval 21 , x , 1, the inverse tangent function is defined and

differentiable for all real numbers. To find   d ___ 
dx

  (arctan x), we follow a similar

procedure to that for   d ___ 
dx

  (arcsin x).

The definition of the inverse tangent (arctan) function is

y 5 arctan x ⇒ tan y 5 x for 2   p __ 
2

   < y <   p __ 
2

   .

Differentiating tan y 5 x implicitly with respect to x gives:

   d ___ 
dx

  (tan y) 5   d ___ 
dx

  (x)  Differentiating both sides.

(sec2 y)  
dy

 ___ 
dx

   5 1 Implicit differentiation.

   
dy

 ___ 
dx

   5   1 _____ 
sec2 y

   Dividing by sec2 y.

   
dy

 ___ 
dx

   5   1 _________ 
1 1 tan 2 y

   Applying identity 1 1 tan 2 y 5 sec2 y.

Therefore,   d ___ 
dx

  (arctan x) 5   1 ______ 
1 1 x 2   . tan y 5 x.

The derivatives for the inverse secant, inverse cosecant and inverse 
cotangent functions can also be found by means of implicit differentiation. 
They are included in the list below but are not necessary for this course.

Derivatives of the inverse trigonometric functions

  d ___ 
dx  (arcsin x) 5   1 _______ 

  √
______

 1 2 x 2  
     d ___ 

dx  (arccsc x) 5 2   1 ________ 
x  √

______

 x 2 2 1  
  

  d ___ 
dx  (arccos x) 5 2   1 _______ 

  √
______

 1 2 x 2  
     d ___ 

dx  (arcsec x) 5   1 ________ 
x  √

______

 x 2 2 1  
  

  d ___ 
dx  (arctan x) 5   1 ______ 

1 1 x 2     d ___ 
dx  (arccot x) 5 2   1 ______ 

1 1 x 2  

Example 18 

Find the   
dy

 ___ 
dx

   for each of the following.

a) y 5 cos21(e 2x)

b) y 5 x arcsin 2x 1   1 _ 2    √
_______

 1 2 4x 2  

c) ln (x 1 y) 5 arctan  (   x __ 
y
   ) 
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Solution

a)   
dy

 ___ 
dx

   5   
d

 ___ 
dx

  [cos21(e 2x)] 5   2 1 __________ 
  √

_________

 1 2 (e 2x)2  
      d ___ 

dx
  (e 2x) Chain rule and 

            d __ 
dx

  (arccos x) 5   2 1 ______ 
  √

_____
 1 2x 2  
  .

     5   2 1 _______ 
  √

______

 1 2e 4x  
   e 2x  2 Chain rule, again.

     
dy

 ___ 
dx

    5 2   2e 2x
 ________ 

  √
______

 1 2 e 4x  
  

b)   
dy

 ___ 
dx

   5   
d

 ___ 
dx

    ( x arcsin 2x 1   1 __ 
2

  (1 2 4x 2 )   
1
 _ 2    ) 

 5 x   d ___ 
dx

  (arcsin 2x) 1 arcsin 2x   d ___ 
dx

  (x) 1   1 __ 
2

      1 __ 
2

  (1 2 4x 2 ) 2   1 _ 2      d ___ 
dx

  (1 2 4x 2)

 5 x  (   1 _________ 
  √

________

 1 2 (2x)2  
     d ___ 
dx

  (2x) ) 1 arcsin 2x 1   28x _________ 
4  √

_______

 1 2 4x 2  
  

 5   2x ________ 
  √

_______

 1 2 4x2  
   1 arcsin 2x 1   22x ________ 

  √
_______

 1 2 4x 2  
  

  
dy

 ___ 
dx

   5 arcsin 2x

c)   d ___ 
dx

  [ln (x 1 y)] 5   d ___ 
dx

   [ arctan  (   x __ 
y
   )  ]    Differentiating both sides 

          implicitly.

  1 _____ x 1 y   ( 1 1   
dy

 ___ 
dx

   )  5   1 ______ 

1 1   x
 2
 __ 

y 2  
   (   y 2 x   

dy
 ___ 

dx
  
 _______ 

y 2   )    Chain rule,

         

   
1 1   

dy
 ___ 

dx
  
 ______ 

x 1 y
     5   

y 2 x   
dy

 ___ 
dx

  
 _______ 

x 2 1 y 2  

  x 2 1 y 2 1   
dy

 ___ 
dx

  x 2 1   
dy

 ___ 
dx

  y 2 5 xy 1 y 2 2   
dy

 ___ 
dx

  x 2 2   
dy

 ___ 
dx

  xy

   
dy

 ___ 
dx

  (2x 2 1 xy 1 y 2) 5 xy 2 x 2

   
dy

 ___ 
dx

   5   
xy 2 x 2

 ____________  
2x 2 1 xy 1 y 2  

Example 19 
A painting that is 175 cm from top to bottom is hanging on the wall of 
a gallery such that it’s base is 225 cm above the eye level of an observer. 
How far from the wall should the observer stand to get the best view of the 
painting, that is, so that the angle subtended at the observer’s eye by the 
painting is a maximum? (This is similar to Example 34 in Section 7.6.)

Solution

Change all lengths from centimetres to metres.

tan u 5   4 __ 
x
   and tan b 5   

  9 _ 4  
 __ 

x
  

x

α

β
θ 225 cm

175 cm

  d __ 
dx  (arctan x) 5   1 _____ 

1 1 x 2   ,

quotient rule.
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Because 0 , u ,   p __ 
2

   and 0 , b ,   p __ 
2

  , we have

u 5 arctan   4 __ 
x
   and b 5 arctan   

  9 _ 4  
 __ 

x
  .

Substituting these values of u and b into the equation a 5 u 2 b gives

a 5 arctan   4 __ 
x
   2 arctan   

  9 _ 4  
 __ 

x
  .

Differentiating with respect to x gives:

   da ___ 
dx

   5   d ___ 
dx

   [ arctan (4x 21) 2 arctan  (   9 __ 4  x21 )  ] 
  5   1 __________ 

1 1 (4x21)2  (24x22) 2   1 ___________ 

1 1   (   9 __ 4  x21 )  
2
 
   ( 2   9 __ 4  x22 ) 

  5   24 _______ 
x 2 1 16

   1  
   9 __ 4  
 _______ 

x 2 1   81 ___ 
16

  
  

  5   24 _______ 
x 2 1 16

   1   36 _________ 
16x 2 1 81

  

Setting   da ___ 
dx

   5 0, we get:

36(x 2 1 16) 2 4(16x 2 1 81) 5 0

  228x 2 1 252 5 0

x 2 5   252
 ___ 28   5 9 ⇒ x 5 63, however x  23

We use the first derivative test to determine if the angle a is a maximum 
when x 5 3, using test values of x 5 2 and x 5 4.

When x 5 2,   da ___ 
dx

   5   7 ___ 
145

   . 0 and when x 5 4,   da ___ 
dx

   5 2   49 ____ 
2696

   < 0.

Hence, the angle a has an absolute maximum value at x 5 3. Therefore, the 
observer should stand 3 metres away from the wall to get the ‘best’ view of 
the painting.

Summary of differentiation rules

Derivative of f (x) y 5 f (x) ⇒ f 9(x) 5   lim    
h → 0

    
f (x 1 h) 2 f (x)

  _____________ 
h

  

Derivative of x n f (x) 5 x n ⇒ f 9(x) 5 nx n 21

Derivative of sin x f (x) 5 sin x ⇒ f 9(x) 5 cos x
Derivative of cos x f (x) 5 cos x ⇒ f 9(x) 5 2sin x
Derivative of tan x f (x) 5 tan x ⇒ f 9(x) 5 sec2 x
Derivative of sec x f (x) 5 sec x ⇒ f 9(x) 5 sec x tan x
Derivative of csc x f (x) 5 csc x ⇒ f 9(x) 5 2csc x cot x
Derivative of cot x f (x) 5 cot x ⇒ f 9(x) 5 2csc2 x

Note: derivative rules for trigonometric functions only apply if x is in radian measure.

Derivative of e x f (x) 5 e x ⇒ f 9(x) 5 e x

Derivative of b x f (x) 5 b x ⇒ f 9(x) 5 b x ln b

Derivative of ln x f (x) 5 ln x ⇒ f 9(x) 5   1 __ x  

Derivative of logb x f (x) 5 logb x ⇒ f 9(x) 5   1 _____ x ln b
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Derivative of arcsin x f (x) 5 arcsin x ⇒ f 9(x) 5   1 _______ 
  √

______

 1 2 x 2  
  

Derivative of arccos x f (x) 5 arccos x ⇒ f 9(x) 5 2   1 _______ 
  √

______

 1 2 x 2  
  

Derivative of arctan x f (x) 5 arctan x ⇒ f 9(x) 5   1 ______ 
1 1 x 2  

Derivative of arcsec x f (x) 5 arcsec x ⇒ f 9(x) 5   1 ________ 
x  √

______

 x 2 2 1  
  

Derivative of arccsc x f (x) 5 arccsc x ⇒ f 9(x) 5 2   1 ________ 
x  √

______

 x 2 2 1  
  

Derivative of arccot x f (x) 5 arccot x ⇒ f 9(x) 5 2   1 ______ 
1 1 x 2  

Chain rule for composite functions:   
dy

 ___ 
dx   5   

d
 ___ 

dx  [f (g (x))] 5 f 9(g (x))  g9(x)

Product rule:   
dy

 ___ 
dx   5   

d
 ___ 

dx  [f (x)  g (x)] 5 f (x)  g9(x) 1 g (x)  f 9(x)

Quotient rule:   
dy

 ___ 
dx   5   

d
 ___ 

dx   [   f (x)
 ____ 

g (x)
   ]  5   

g (x)  f 9(x) 2 f (x)  g9(x)
  ____________________  

[g (x)]2  

Exercise 15.3

In questions 1–12, find the derivative of y with respect to x,   
dy

 ___ 
dx   , by implicit 

differentiation.

 1 x 2 1 y 2 5 16  2 x 2y 1 xy 2 5 6

 3 x 5 tan y  4 x 2 2 3xy 2 1 y 3x 2 y 2 5 2

 5   x __ y   2   
y
 __ x   5 1  6 xy  √

_____
 x 1 y   5 1

 7 x 1 sin y 5 xy  8 x 2y 3 5 x 4 2 y 4

 9 xy 1 ey 5 0 10 (x 1 2)2 1 (y 1 3)2 5 25

11 x 5 tan y 12 y 1   √
___

 xy   5 3x 3

In questions 13–16, find the lines that are a) tangent and b) normal to the curve at 
the given point.

13 x 3 2 xy 2 3y 2 5 0, (2, 22) 14 16x 4 1 y 4 5 32, (1, 2)

15 2xy 1 p sin y 5 2p,  ( 1,   p __ 2   )  16  3 √
___

 xy   5 14x 1 y, (2, 232)

17 For the circle x 2 1 y 2 5 r2 show that the tangent line at any point (x1, y1) on the 
circle is perpendicular to the line that passes through (x1, y1) and the centre of 
the circle.

18 Consider the equation x 2 1 xy 1 y 2 5 7.

a) Find the two points where the curve intersects the x-axis. Show that the 
tangents to the curve at these two points are parallel.

b) Find any points where the tangent to the curve is parallel to the x-axis.

c) Find any points where the tangent to the curve is parallel to the y-axis.

19 The line that is normal to the curve x 2 1 2xy 2 3y 2 5 0 at (1, 1) intersects the 
curve at what other point?

In questions 20 and 21, find   
dy

 ___ 
dx   and   

d 2y
 ___ 

dx 2   for the given equation.

20 4x 2 1 9y 2 5 36 21 xy 5 2x 2 3y
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22 Consider the equation xy 3 5 1. Find   
dy

 ___ 
dx   and   

d 2y
 ___ 

dx 2   by two different methods.

a) Solve for y in terms of x and differentiate explicitly.

b) Differentiate implicitly.

23 The graph (shown right) of the equation 
 x 2 1 y 2 5 2x 2 1 2y 2 2 x 2 is a type of curve 

called a cardioid. A cardioid is a heart-shaped 
curve generated by a fixed point on a circle as 
it rolls around another circle having the same 
radius. Find the equation of the line tangent to 
this particular cardioid at the point (0,   1 _ 2  ).

In questions 24–33, find the derivative of y with respect to x,   
dy

 ___ 
dx  .

24 y 5 ln (x 3 1 1) 25 y 5 ln (sin x)

26 y 5 log5   √
______

 x 2 2 1   27 y 5 ln   √
_____

   1 1 x _____ 1 2 x    

28 y 5   √
______

 log10 x   29 y 5 ln  (   a 2 x _____ a 1 x   ) 

30 y 5 ln (ecos x) 31 y 5   1 _____ 
log3 x  

32 y 5 x ln (x) 2 x 33 y 5 ln (ax) 2 (ln b) logb x

34 Find the equation of the line tangent to the graph of y 5 log2 x at the point 
 x 5 8. Express the equation exactly. Can you find a way to graph y 5 log2 x on 

your GDC in order to check your answer?

35 Given y 5   √
______

   x
 2 2 1 ______ x 2 1 1

     we could find   
dy

 ___ 
dx   by applying the chain rule and the

 quotient rule. However, it is much easier to first take the natural logarithm of 
both sides, use the properties of logarithms to simplify as much as possible,

 and then differentiate implicitly to find   
dy

 ___ 
dx  . This technique is called logarithmic

 differentiation. Use this technique to show that   
dy

 ___ 
dx   5   2x _______________  

(x 2 2 1 )   
1 _ 2   (x 2 1 1 )   

3 _ 2   
  .

36 Find the x-coordinate, between 0 and 1, of the point of inflexion on the graph of 
the function f (x) 5 x 2 ln (x 2). Express your answer exactly.

37 a) Given g (x) 5   ln x ____ x   , find expressions for g9(x) and g(x).

b) Show that g has an absolute maximum at x 5 e, and state the maximum 
value of g.

In questions 38–41, find the derivative of y with respect to x,   
dy

 ___ 
dx  .

38 y 5 arctan (x 1 1) 39 y 5 sin21 (    x _______ 
  √

______

 1 1 x 2  
   ) 

40 y 5 arccos  (   3 __ x 2   )  41 ln   √
______

 1 1 x 2   5 x tan21 x

42 Given that f (x) 5 arcsin x 1 arccos x, find f 9(x). What can you conclude about 
the function f ?

x

y

O 0.5

0.5

�0.5
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 15.4 Related rates
A claim was made in the first section of this chapter that ‘the chain rule 
is the most important, and most widely used, rule of differentiation’. The 
chain rule has been repeatedly applied in all parts of this chapter thus far. 
Another important use of the chain rule is to find the rates of change of 
two or more variables that are changing with respect to time. Calculus 
provides us with the tools and techniques to solve problems where 
quantities (variables) are changing rather than static.

When a stone is thrown into a pond, a circular pattern of ripples is formed. 
In this situation we can observe an ever-widening circle moving across 
the water. As the circular ripple moves across the water, the radius r of the 
circle, its circumference C, and its area A all increase as a function of time t. 
Not only are these quantities (variables) functions of time, but their values 
at any particular time t are related to one another by familiar formulae 
such as C 5 2pr and A 5 pr2. Thus their rates of change are also related to 
one another.

Example 20 
A stone is thrown into a pond causing ripples in the form of concentric 
circles to move away from the point of impact at a rate of 20 cm per 
second. Find the following when a circular ripple has a radius of 50 cm and 
again when its radius is 100 cm.
a) the rate of change of the circle’s circumference
b) the rate of change of the circle’s area

43 Show if a is a constant that

a)   d ___ 
dx    [ arctan  (   x __ 

a
   )  ]  5   a _______ 

a2 1 x 2   b)   d ___ 
dx    [ arcsin  (   x __ 

a
   )  ]  5   1 ________ 

  √
_______

 a2 2 x 2  
  

44 Find the equation of the line tangent to the curve y 5 4x arctan 2x at the point 
on the curve where x 5   1 _ 2  . Express the equation exactly in the form y 5 mx 1 c, 
where m and c are constants.

45 Consider the function f (x) 5 arcsin (cos x) with domain of 0 < x < p.
a) Prove that f is a linear function.
b) Express the function exactly in the form f (x) 5 ax 1 b, where a and b are 

constants.

46 A 3-metre tall statue is on top of a column such that the bottom of the statue is 2 
metres above the eye level of a person viewing the statue. How far from the base 
of the column should the person stand to get the best view of the statue, that is, 
so that the angle subtended at the observer’s eye by the statue is a maximum?

47 A particle moves along the x-axis so that its displacement, s (in metres), from the 
origin at any time t > 0 (in seconds) is given by s(t) 5 arctan   √

_

 t  .
a) Find the exact velocity of the particle at (i) t 5 1 second, and at (ii) t 5 4 seconds.
b) Find the exact acceleration of the particle at (i) t 5 1 second, and at (ii) t 5 4 

seconds.
c) Describe the motion of the particle.
d) What is the limiting displacement of the particle as t approaches infinity?
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Solution

In calculus, a derivative represents a rate of change of one variable with 
respect to another variable. If the circles are moving outward at a rate of 
20 cm/sec, then the rate of change of the radius is 20 cm/sec, and in the 
notation of calculus we write

  dr __ 
dt

   5 20.

a) Knowing that the relationship between the radius, r, and the 
circumference, C, is C 5 2pr, and that the rate of change of the radius

 with respect to time is   dr __ 
dt

   5 20, we can use the chain rule to find the

 rate of change of the circumference with respect to time, i.e.   dC ___ 
dt

  .

  dC ___ 
dt

   5   dC ___ 
dr

      dr __ 
dt

  

We need to find   dC ___ 
dr

  , the rate of change (derivative) of the circumference 

with respect to the radius. This rate can be derived from the 
relationship between the variables.

C 5 2pr

  d __ 
dr

  (C) 5   d __ 
dr

  (2pr) Differentiate both sides with respect to r.

  dC ___ 
dr

   5 2p Implicit differentiation on the left side.

Since the circumference C is a linear function of the radius r (C 5 2pr),

the derivative   dC ___ 
dr

   is a constant.

We now substitute in for   dC ___ 
dr

   and   dr __ 
dt

   to find the rate of change of the

circumference with respect to time,   dC ___ 
dt

  .

  dC ___ 
dt

   5   dC ___ 
dr

      dr __ 
dt

   ⇒   dC ___ 
dt

   5 2p  20 5 40p cm/sec

The rate of change of a circular ripple’s circumference is constant 
(40p). Therefore, the rate of change of the circumference is 40p cm/sec 
when the radius is 50 cm and also when its 100 cm.

b) Similarly, to find the rate of change of the area with respect to time,   dA ___ 
dt

  , 
we can use the chain rule to write

  dA ___ 
dt

   5   dA ___ 
dr

      dr __ 
dt

   .

Find   dA ___ 
dr

   from the formula, A 5 pr2, that relates the variables A and r.

  d __ 
dr

   (A) 5   d __ 
dr

  (pr2) Differentiate both sides with respect to r.

  dA ___ 
dr

   5 p(2r) 5 2pr Implicit differentiation on the left side.

 Hint: There is a slightly different 

method to determine   dC ___ 
dt

  . We can 

find the rate by differentiating 
implicitly with respect to time, t, 
both sides of the equation, C 5 2pr, 
that gives the relationship between 
the two changing quantities 
(variables).

C 5 2pr

Differentiate both sides with 
respect to t :

  d __ 
dt

  (C ) 5   d __ 
dt

  (2pr)

Implicit differentiation:

  dC ___ 
dt

   5 2p   dr __ 
dt

  

Substitute   dr __ 
dt

   5 20:

  dC ___ 
dt

   5 2p  20 5 40p cm/sec
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Since the area A is a non-linear function of the radius r (A 5 pr2), the

derivative   dA ___ 
dr

   is not a constant but has different values depending

on the value of r.

We substitute in for   dA ___ 
dr

   and   dr __ 
dt

   to find the rate of change of the area

with respect to time,   dA ___ 
dt

  .

  dA ___ 
dt

   5   dA ___ 
dr

       dr ___ 
dt

   ⇒   dA ___ 
dt

   5 2pr  20 5 40pr

Thus, the rate of change of the circle's area with respect to time,   dA ___ 
dt

  , is a 
linear function in terms of the radius r.

When the radius is 50 cm,   dA ___ 
dt

   5 40p  50 5 2000p cm2/sec 

  6280 cm2/sec [ 0.628 m2/sec].

When the radius is 100 cm,   dA ___ 
dt

   5 40p  100 5 4000p cm2/sec 

  12 600 cm2/sec [ 1.26 m2/sec].

Note that when r 5 100 cm the area is changing at twice the rate it was 
when r 5 50 cm.

Example 21�

A 4-metre ladder stands upright against a vertical wall. If the foot of the 
ladder is pulled away from the wall at a constant rate of 0.75 m/sec, how 
fast is the top of the ladder coming down the wall at the instant it is (i) 3 
metres above the ground, and (ii) 1 metre above the ground. Give answers 
approximate to three significant figures.

Solution

Let x and y represent the distances of the foot and top of the ladder, 
respectively, from the bottom of the wall. Then from Pythagoras’ theorem, 
we have

x 2 1 y 2 5 16.

Given that the ladder is being pulled away at a rate of 0.75 m/sec, then

  dx ___ 
dt

   5 0.75 5   3 __ 4   .

So we know the rate   dx ___ 
dt

  , and we need to find   
dy

 __ 
dt

   when y 5 3 and when y 5 1.

Rather than starting with the chain rule and writing an equation relating 
the different rates, let’s utilize the chain rule by differentiating implicitly 
with respect to time the equation relating the relevant variables x and y.

   d __ 
dt

  (x 2 1 y 2) 5   d __ 
dt

  (16)

2x   dx ___ 
dt

   1 2y   
dy

 __ 
dt

   5 0

 Hint: It is important to include 
the appropriate units when giving a 
rate of change (derivative) answer. 
For example cm/sec, m2/hour, 
litres/sec, etc.

y

x

4 m
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dy

 __ 
dt

   5 2   x __ 
y
     dx ___ 
dt

  

(i) We know   dx ___ 
dt

   5   3 __ 4  , so to find   
dy

 __ 
dt

   when y 5 3 m, we find the

 corresponding value for x.

x 2 1 y 2 5 16 ⇒ x 5   √
_______

 16 2 y 2   ;  for y 5 3: x 5   √
_______

 16 2 32   5   √
__

 7  

Hence, when y 5 3:   
dy

 __ 
dt

   5 2   
  √

__
 7  
 ___ 

3
      3 __ 4   5 2   

  √
__

 7  
 ___ 4    20.661 m/sec.

(ii) For y 5 1: x 5   √
_______

 16 2 12   5   √
___

 15  

Hence, when y 5 1:   
dy

 __ 
dt

   5 2   
  √

___
 15  
 ____ 

1
      3 __ 4   5 2   

3  √
___

 15  
 _____ 4    22.90 m/sec.

It makes sense that   
dy

 __ 
dt

   is negative because the distance y decreases as the 

ladders slides down.

Example 22�

In the preceding example, how fast is the angle between the ladder and the 
ground changing when y 5 2 m?

Solution

We know   dx ___ 
dt

   5   3 __ 4   and we seek to find   du ___ 
dt

  . We need a relationship, true at

any instant, between the variables u and x. Several trigonometric ratios 
could be used, but perhaps the most straightforward is

x 5 4 cos u.

Now we differentiate implicitly with respect to t and solve for   du ___ 
dt

  .

  d __ 
dt

  (x) 5   d __ 
dt

  (4 cos u)

   dx ___ 
dt

   5 24 sin u   du ___ 
dt

  

   du ___ 
dt

   5 2   1 ______ 
4 sin u

     dx ___ 
dt

  

When y 5 2 we find that sin u 5   1 _ 2  . Substituting appropriately for sin u

and   du ___ 
dt

  , we have

  du ___ 
dt

   5 2   1 ____ 
4(  1 _ 2  )

      3 __ 4   5 2   3 __ 
8

   .

Therefore, the angle is decreasing at a rate of   3 _ 8   radians/sec (or 
approximately 21.5°/sec).

The solution strategy used in the preceding two examples is summarized 
below.
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Solving problems involving related rates

1. Identify any rate(s) of change you know and the rate of change to be found.

2. Draw a diagram with all of the important information clearly labelled.

3. Write an equation relating the variables whose rates of change are either known or are 
to be found.

4. Using the chain rule, differentiate the equation implicitly with respect to time. Solve 
for the rate to be found.

5. Substitute in all known values for any variables and any rates of change. Compute the 
required rate of change. Be sure to include appropriate units with the result.

Example 23�

Consider a conical tank as shown in the diagram. Its radius at the top is  
4 metres and its height is 8 metres. The tank is being filled with water at  
a rate of 2 m3/min. How fast is the water level rising when it is 5 metres 
high?

Solution

We know the rate of change of the volume with respect to time, that is, 

  dV ___ 
dt

   5 2 m3/min and we seek to find the rate of change of the height of the

water level with respect to time, call it   dh ___ 
dt

  .

Not including t, there are three variables involved in this problem: V, r 
and h. The formula for the volume of a cone will give us an equation that 
relates all of these variables.

V 5   1 _ 3  pr2h

If we differentiate this equation now we will get the rate   dr __ 
dt

   in our result.

We need to either find   dr __ 
dt

   (which is possible) or eliminate r from the

equation by solving for it in terms of one of the other variables and 
substitute. By using similar triangles we can write a proportion involving r 
and h.

  r __ 
h

   5   4 __ 
8

   ⇒ r 5   h __ 
2

  

Hence, V 5   1 __ 
3

  p   (   h __ 
2

   )  
2

 h ⇒ V 5   p ___ 
12

  h3.

Differentiating implicitly with respect to t and solving for   dh ___ 
dt

  :

  dV ___ 
dt

   5   p ___ 
12

    3h2  dh ___ 
dt

   ⇒   dV ___ 
dt

   5   p __ 4  h2  dh ___ 
dt

   ⇒   dh ___ 
dt

   5   4 ____ 
ph2     

dV ___ 
dt

  

h

h

4 m

8 m
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Substituting h 5 5 and   dV ___ 
dt

   5 2 gives

  dh ___ 
dt

   5   4 _____ 
p(5)2    2 5   8 ____ 

25p
    0.102 m/min [or 10.2 cm/min].

Therefore, the water level is rising at a rate of 0.102 m/min when the water 
level is at 5 m.

The following example involves two rates of change.

Example 24�

At 12 noon ship A is 65 km due north of a second ship, B. Ship A sails 
south at a rate of 14 km/hr, and ship B sails west at a rate of 16 km/hr.

a) How fast are the two ships approaching each other 1  1 _ 2   hours later at 1:30?

b) At what time do the two ships stop approaching and begin moving 
away from each other?

Solution

Let a and b be the distances that ships A and B, respectively, are from the 
intersection of the ships’ paths (see diagram). Let c be the distance between 
the two ships. Since a is decreasing and b is increasing, we know that 

  da ___ 
dt

   5 214 km/hr and   db ___ 
dt

   5 16 km/hr.

a) The three variables are related by the equation

c2 5 a2 1 b2.

Differentiating implicitly with respect to t gives

2c    dc __ 
dt

   5 2a   da ___ 
dt

   1 2b   db ___ 
dt

   .

The rate at which the ships are approaching is   dc __ 
dt

  . Solving for   dc __ 
dt

   :

  dc __ 
dt

   5   
a   da ___ 

dt
   1 b   db ___ 

dt
  
 _________ c   

Substituting   da ___ 
dt

   5 214 and   db ___ 
dt

   5 16:

  dc __ 
dt

   5   214a 1 16b ___________ c   

The distances a and b are both functions of time; thus, they can be 
written in terms of t as

a 5 65 2 14t  and b 5 16t.

 Hint: Be careful not to substitute 
in known quantities too early in the 
process of solving a related rates 
problem. Substitute the known 
values of any variables and any rates 
of change after differentiation. For 
example, in Example 23 h remained 
a variable (it is a quantity that is 
changing over time) until the last 
stage of the solution when we 
substituted h 5 5. If we substituted 

earlier into V 5   p ___ 12  h3, we would 

have obtained   dV ___ 
dt

   5 0, which is 

obviously wrong.

a

b

c

A

B

N

E

S

W

65 km
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Evaluating these expressions when t 5 1  1 _ 2  , gives a 5 44, b 5 24 and 

c 5   √
________

 442 1 242    50.12. Substituting these values into the expression

for   dc __ 
dt

   gives

  dc __ 
dt

      
214(44) 1 16(24)

  ________________ 
50.12

    24.629.

Therefore, at 1:30 the distance between the two ships is decreasing at a 
rate of approximately 24.63 km/hr.

b) The time at which the two ships will stop approaching each other and

 begin to move away is when the value of   dc __ 
dt

   changes from negative to

 positive. So we need to find when   dc __ 
dt

   5 0.

  dc __ 
dt

   5   214a 1 16b ___________ 
c
    5 0 ⇒ 214a 1 16b 5 0

Substituting in a 5 65 2 14t and b 5 16t gives:

214(65 2 14t) 1 (16t) 5 0 ⇒ 452t 2 910 5 0 ⇒ t 5   910 ___ 
452

    2.013

Therefore, just moments after 2:00 the two ships will stop approaching 
and start moving away from each other.

Exercise 15.4

 1 A water tank is in the shape of an inverted cone. Water is being drained from the

 tank at a constant rate of 2 m3/min. (Since volume is decreasing,   dV ___ 
dt

   is negative.)

 The height of the tank is 8 m, and the diameter of the top of the tank is 6 m. 
When the height of the water is 5 m, find, in units of cm/min, the following:

a) the rate of change of the water level

b) the rate of change of the radius of the surface of the water.

 2 A spherical balloon is being inflated at a constant rate of 240 cm3/sec. [V 5   4 _ 3  pr3]

a) At what rate is the radius increasing when the radius is equal to 8 cm?

b) At what rate is the radius increasing 5 seconds after the start of inflation?

 3 Oil is dripping from a car engine on to a garage floor, making a growing circular 
stain. The radius, r, of the stain is increasing at a constant rate of 1 cm/hr. When 
the radius is 4 cm, find:

a) the rate of change of the circumference of the stain

b) the rate of change of the area of the stain.

 4 A hot air balloon is rising straight up from a level field at a constant rate of 
50 m/min. An observer is standing 150 m from the point on the ground where 
the balloon was launched. Let u be the angle between the ground and the 
observer's line of sight to the balloon from the point at which the observer is 
standing (angle of elevation of the balloon). What is the rate of change of u (in 
radians/min) when the height of the balloon is 250 m?

 5 Jenny is flying a kite at a constant height above level ground of 72 m. The wind 
carries the kite away horizontally at a rate of 6 m/sec. How fast must Jenny let out 
the string at the moment when the kite is 120 m away from her?
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 6 A 5-foot boy is walking toward a 20-foot lamp post 
at a constant rate of 6 ft/sec. The light from the  
lamp post causes the boy to cast a shadow.  
How fast is the tip of his shadow moving?

 7 Two cars start from a point A at the same time. One travels west at 60 km/hr 
and the other travels north at 35 km/hr. How fast is the distance between them 
increasing 3 hours later?

 8 A point moves along the curve y 5   √
______

 x 2 1 1   in such a way that   
dx

 ___ 
dt

   5 4. 

 Find   
dy

 ___ 
dt

   when x 5 3.

 9 A horizontal trough is 4 m long, 1.5 m wide and 1 m deep. Its cross-section is an 
isosceles triangle. Water is flowing into the trough at a constant rate of  
0.03 m3/sec. Find the rate at which the water level is rising 25 seconds after the 
water started flowing into the trough.

10 If the radius of a sphere is increasing at the constant rate of 3 mm/sec, how fast is 
the volume changing when the surface area is 10 mm2? [Surface area 5 4pr2]

11 Two roads, A and B, intersect each other at an angle of 60°. Two cars, one on 
road A travelling at 40 km/hr and the other on road B travelling at 50 km/hr, are 
approaching the intersection. If, at a certain moment, the two cars are both 2 km 
from the intersection, how fast is the distance between them changing?

12 If the diagonal of a cube is increasing at a rate of 8 cm/sec, how fast is a side of 
the cube increasing?

13 A point P is moving along the circle with equation x 2 1 y 2 5 100 at a constant 
rate of 3 units/sec. How fast is the projection of P on the x-axis moving when P is 
5 units above the x-axis?

14 A jet is flying at a constant speed at an altitude of 10 000 m on a path that will 
take it directly over an observer on the ground. At a given instant the observer

 determines that the angle of elevation of the jet is   p __ 3   radians and is increasing at

 a constant rate of   1 __ 60   radians/sec. Find the speed of the jet.

15 A television cameraman is filming an automobile race from a platform that is 
40 metres from the racing track, following a car that is moving at 288 km/hr. How 
fast, in degrees per second, will the camera be turning when a) the car is directly 
in front of the camera and b) a half second later? Answer to the nearest whole 
degree.

16 A plane is flying due east at 640 km/hr and climbing vertically at a rate of 
180 m/min. An airport tower is tracking it. Determine how fast the distance 
between the plane and the tower is changing when the plane is 5 km above the 
ground over a point exactly 6 km due west of the tower. Express the answer in 
km/hr.

20 ft

5 ft

1 m

1.5 m

4 m
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Many problems in science and mathematics involve finding the maximum or 
minimum value (optimum value) of a function over a specified or implied 
domain. The development of the calculus in the seventeenth  
century was motivated to a large extent by maxima and minima 
(optimization) problems. One such problem lead Pierre de Fermat 
(1601–1665) to develop his Principle of Least Time: a ray of light will follow 
the path that takes the least (or minimum) time. The solution to Fermat’s 
principle lead to Snell’s law, or law of refraction (see the investigation at 
the end of this section). The solution is found by applying techniques of 
differential calculus – which can also be used to solve other optimization 
problems involving ideas such as least cost, maximum profit, minimum 
surface area and greatest volume.

Previously, we learned the theory of how to use the derivative of a function 
to locate points where the function has a maximum or minimum (i.e. 
extreme) value. It is important to remember that if the derivative of a 
function is zero at a certain point it does not necessarily follow that the 
function has an extreme value (relative or absolute) at that point – it only 
ensures that the function has a horizontal tangent (stationary point) at that 
point. An extreme value may occur where the derivative is zero or at the 
endpoints of the function’s domain. 

The graph of f (x) 5 x 4 2 8x 3 1 18x 2 2 16x 2 2 is shown left. The derivative 
of f (x) is f 9(x) 5 4x 3 2 24x 2 1 36x 2 16 5 4(x 2 4)(x 2 1)2. The function 
has horizontal tangents at both x 5 1 and x 5 4, since the derivative is zero 
at these points. However, an extreme value (absolute minimum) occurs 
only at x 5 4. It is important to confirm – graphically (see GDC images) 
or algebraically – the precise nature of a point on a function where the 
derivative is zero. Some different algebraic methods for confirming that a 
value is a maximum or minimum will be illustrated in the examples that 
follow.

It is also useful to remember that one can often find extreme values 
(extrema) without calculus (e.g. using a ‘minimum’ command on a 
graphics calculator, as shown). Calculator or computer technology can be 
very helpful in modelling, solving or confirming solutions to optimization 
problems. However, it is important to learn how to apply algebraic 
methods of differentiation to optimization problems because it may be the 
only efficient way to obtain an accurate solution.

Let’s start with a relatively straightforward example. We can use the steps 
in the solution to develop a general strategy that can be applied to more 
sophisticated problems.

Example 25 – Finding�a�maximum�area�(Developing�a�general�strategy)

Find the maximum area of a rectangle inscribed in an isosceles right 
triangle whose hypotenuse is 20  cm long.

Optimization15.5

Minimum
X=4.0000008 Y=-34

CALCULATE
1:value
2:zero
3:minimum
4:maximum

6:dy/dx
7: f(x)dx

5:intersect
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General strategy for solving optimization 
problems
Step 1: Draw a diagram that accurately illustrates the problem. Label all 

known parts of the diagram. Using variables, label the important 
unknown quantity (or quantities) (for example, x for base and y 
for height in Example 25).

Step 2: For the quantity that is to be optimized (area in Example 25), 
express this quantity as a function in terms of a single variable. 
From the diagram and/or information provided, determine the 
domain of this function.

Step 3: Find the derivative of the function from Step 2, and determine 
where the derivative is zero. This value (or values) of the derivative, 
along with any domain endpoints, are the critical values 
(x 5 0, x 5 10 and x 5 20 in Example 25) to be tested.

Step 4: Using algebraic (e.g. second derivative test) or graphical (e.g. GDC) 
methods, analyze the nature (maximum, minimum, neither) of the 
points at the critical values for the optimized function. Be sure to 
answer the precise question that was asked in the problem.

Solution

Step 1:  Draw an accurate diagram. Let the base of the rectangle be x  cm 
and the height y  cm. Then the area of the rectangle is A 5 xy  cm2.

Step 2: Express area as a function in terms of only one variable.

It can be deduced from the diagram that y 5 10 2   x __ 
2

  .

Therefore, A(x) 5 x  ( 10 2   x __ 
2

   )  5 10x 2   x 2 __ 
2

  .

x must be positive and from the diagram it is clear that 
x must be less than 20 (domain of A: 0 , x , 20).

Step 3: Find the derivative of the area function and find for what 
value(s) of x it is zero. 

 A9(x) 5 10 2 x   A9(x) 5 0 when x 5 10

Step 4: Analyze A(x) at x 5 10 and also at the endpoints of the 
domain, x 5 0 and x 5 20.

The second derivative test (Section 13.3) provides information 
about the concavity of a function. The second derivative is A(x) 
5 21 and since A(x) is always negative then A(x) is always 
concave down, indicating A(x) has a maximum at x 5 10.

A(0) 5 0 and A(20) 5 0, indicating A(x) has an absolute 
maximum at x 5 10.

Therefore, the rectangle has a maximum area equal to 

A(10) 5 10 ( 10 2   10 ___ 
2

   )  5 50  cm2.

45°

45°

45°

10 �
20 cm

x
2x

y
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Example 26 – Finding�a�minimum�length�–�two�posts�problem 

Two vertical posts, with heights of 7  m and 13  m, are secured by a rope 
going from the top of one post to a point on the ground between the posts 
and then to the top of the other post. The distance between the two posts 
is 25  m. Where should the point at which the rope touches the ground be 
located so that the least amount of rope is used?

Solution

Step 1: An accurate diagram is drawn. The posts are drawn as line 
segments PQ and TS and the point where the rope touches the 
ground is labelled R. The optimum location of point R can be 
given as a distance from the base of the shorter post, QR, or from 
the taller post, SR. It is decided to give the answer as the distance 
from the shorter post – and this is labelled x. There are two other 
important unknown quantities: the lengths of the two portions of 
the rope, PR and TR. These are labelled a and b, respectively. 

Step 2: The quantity to be minimized is the length L of the rope, which is 

 the sum of a and b. From Pythagoras’ theorem, a 5   √
_______

 x 2 1 49   and 

 b 5   √
______________

  (25 2 x)2 1 169  . Therefore, the function for length (L) can 
be expressed in terms of the single variable x as

 L(x) 5   √
_______

 x 2 1 49   1   √
______________

  (25 2 x)2 1 169  

  5   √
_______

 x 2 1 49   1   √
___________________

  x 2 2 50x 1 625 1 169  

 L(x) 5   √
_______

 x 2 1 49   1   √
_____________

  x 2 2 50x 1 794  

 From the given information and diagram, the domain of  
L(x) is 0 < x < 25.

Step 3:  To facilitate differentiation, express L(x) using fractional exponents:

  L(x) 5 (x 2 1 49 )   
1
 _ 2    1 (x 2 2 50x 1 794 )   

1
 _ 2   

 Then apply the chain rule for differentiation:

    dL ___ 
dx

   5   1 _ 2  (x 2 1 49 ) 
2  1 _ 

2
  
 (2x) 1   1 _ 2   (x 2 2 50x 1 794 ) 

2  1 _ 
2
  
  (2x 2 50) ⇒

    dL ___ 
dx

   5   x ________ 
  √

_______

 x 2 1 49  
   1   x – 25 ______________  

  √
_____________

  x 2 2 50x 1 794  
  

 By setting   dL ___ 
dx

   5 0, we obtain

  x  √
_____________

  x 2 2 50x 1 794   5 2 (x 2 25)  √
_______

 x 2 1 49  

  x 2(x 2 2 50x 1 794) 5 (25 2 x)2(x 2 1 49)

  x 4 2 50x 3 1 794x 2 5 x 4 2 50x 3 1 674x 2 2 2450x 1 30  625

  120x 2 1 2450x 2 30  625 5 0

  5(4x 2 35)(6x 1 175) 5 0

 x 5   35 ___ 4   or x 5 2   175 ___ 
6

  

25 m

13 m

7 m

Q

P

T

b

a

SRx 25 � x
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Step 4: Since x 5 2   175 ___ 
6

   is not in the domain for L(x), then the critical 

 values are x 5 0, x 5   35 ___ 4   and x 5 25. Simply evaluate L(x) for these 
critical values. 

 L(0) 5 7 1   √
____

 794    35.18, L(25) 5   √
____

 674   1 13  38.96, 

 L  (   35 ___ 4   )  5 5  √
___

 41    32.02

 Therefore, the rope should touch the ground at a distance of  

   35 ___ 4   5 8.75  m from the base of the shorter post, to give a minimum

 rope length of approximately 32.02  m.

The minimum value could also be confirmed from the graph of L(x), but 
it would be difficult to confirm using the second derivative test because 
of the algebra required. From this example, we can see that applied 
optimization problems can involve a high level of algebra. If you have 
access to suitable graphing technology, you could perform Steps 3 and 4 
graphically rather than algebraically.

It is interesting to observe that the result for x produced by the calculator 
does not appear to be exact. Why is that? Algebraic techniques using 
differentiation give us the certainty of an exact solution while also allowing 
us to deal with the abstract nature of optimization problems involving 
parameters rather than fixed measurements (e.g. the heights of the posts). 

In both Example 25 and 26, the extreme value occurred at a point where 
the derivative was zero. Although this often happens, an extreme value may 
occur at the endpoint of the domain.

Example 27 – An�endpoint�maximum�

A supply of four metres of wire is to be used to form a square and a circle. 
How much of the wire should be used to make the square and how much 
should be used to make the circle in order to enclose the greatest amount 
of area? Guess the answer before looking at the following solution.

CALCULATE
1:value
2:zero
3:minimum
4:maximum

6:dy/dx
7: f(x)dx

5:intersect

WINDOW
Xmin=0
Xmax=25
Xscl=5
Ymin=0
Ymax=40
Yscl=5
Xres=1

Plot1

Y1= √(X2+49)+√(X
Plot2 Plot3

2-50X+794)

Y3=
Y2=

Y4=
Y5=
Y6=

Minimum
X=8.7499988 Y=32.015621
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Solution

Step 1: Let x 5 length of each edge of the square and r 5 radius of the circle.

Step 2: The total area is given by A 5 x 2 1 pr 2. The task is to write the 
area A as a function of a single variable. Therefore, it is necessary 
to express r in terms of x, or vice versa, and perform a substitution. 

 The perimeter of the square is 4x  and the circumference of the 
circle is 2pr. The total amount of wire is 4 m which gives 

 4 5 4x 1 2pr ⇒ 2pr 5 4 2 4x ⇒ r 5   
2(1 2 x)

 ________ p   

 Substituting gives A(x) 5 x 2 1 p  [   2(1 2 x)
 ________ p    ]  2 5 x 2 1   

4(1 2 x)2

 ________ p    

  5   1 __ p  [(p 1 4)x 2 2 8x 1 4]

 Because the square’s perimeter is 4x, then the domain for A(x) is 
0 < x < 1.

Step 3: Differentiate the function A(x), set equal to zero, and solve.

   d ___ 
dx

    (   1 __ p  [(p 1 4)x 2 2 8x 1 4] )  5   1 __ p  [2(p 1 4)x 2 8] 5 0

 2(p 1 4)x 2 8 5 0 ⇒ (p 1 4)x 5 4 ⇒ x 5   4 _____ 
p 1 4    0.5601

 The critical values are x 5 0, x  0.5601 and x 5 1.

Step 4: Evaluating A(x): A(0)  1.273, A(0.5601)  0.5601 and A(1) 5 1. 
Therefore, the maximum area occurs when x 5 0 which means all 
the wire is used for the circle.

What would the answer be if Example 27 asked for the dimensions of the 
square and circle to enclose the least total area?

Example 28 – Minimizing�time�

A pipeline needs to be constructed to link an offshore drilling rig to an 
onshore refinery depot. The oil rig is located at a distance (perpendicular 
to the coast) of 140  km from the coast. The depot is located inland at a 
distance (perpendicular) of 60  km from the coast. For modelling purposes, 
the coastline is assumed to follow a straight line. The point on the coastline 
nearest to the oil rig is 160  km from the point on the coastline nearest to 
the depot. The rate at which crude oil is pumped through the pipeline 
varies according to several variables, including pipe dimensions, materials, 
temperature, etc. On average, oil flows through the offshore section of the 
pipeline at a rate of 9  km per hour and 5  km per hour through the onshore 
section. Assume that both sections of pipeline can travel straight from 
one point to another. At what point should the pipeline intersect with the 
coastline in order for the oil to take a minimum amount of time to flow 
from the rig to the depot?

4 m

r

x

x

xx

WINDOW
Xmin=0
Xmax=1
Xscl=1
Ymin=0
Ymax=1.5
Yscl=1
Xres=1

Plot1 Y1=(1/π)((π+4)X2-8X+4)

X=0 Y=1.2732395

Y1= (1/π)((π+4)X
Plot2 Plot3

2-8X+4)

Y3=
Y2=

Y4=
Y5=
Y6=
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Solution

Step 1: The optimum location of the point, C, where the pipeline comes 
ashore will be designated by the distance, x, it is from the point 
on the coast that is a minimum distance (perpendicular) from 

 the rig, R (140 km). The distance from R to C is   √
________

 x 2 1 1402   and 

 the distance from D (depot) to C is   √
______________

  (160 2 x)2 1 602  . 

Step 2: The quantity to be minimized is time, so it is necessary to 
express the total time it takes the oil to flow from R to D in terms 
of a single variable. 

 time 5   distance _______ rate   ⇒ time (offshore) 5   
  √

_____________

  x 2 1 19  600  km  
  ______________ 

9  km/hr
  ; 

 time (onshore) 5   
  √

___________________

  x 2 2 320x 1 29  200  km  
  _____________________  

5  km/hr
  

 The function for time T in terms of x is:

 T(x) 5   
  √

__________

 x 2 1 19  600  
 ___________ 

9
   1   

  √
________________

  x 2 2 320x 1 29  200  
  __________________ 5  

 and the domain for T (x) is 0 < x < 160.

Steps 3/4: The algebra for finding the derivative of T (x) is similar to that of 
Step 3 in Example 26. Let’s use graphing technology to find the 
value of x that produces a minimum for T (x).

Therefore, the optimum point for the pipeline to intersect with 
the coast is approximately 134.9 km from the point on the coast 
nearest to the drilling rig.

The result could also be obtained by having a calculator or 
computer graph the derivative of T (x) and compute any zeros 
for T 9(x) in the domain.

See the Investigation and how solving a problem similar to Example 28 
derives Snell’s law (or law of refraction). 

140 km

60 km

160 km

160 � x

C

R

D

x

Plot1

X=134.93037 Y=34.609604
Minimum

Y1= √(X2+19600)/
Plot2 Plot3

9+√(X2-320X+2920
0)/5
Y2=
Y3=
Y4=
Y5=

WINDOW
Xmin=0
Xmax=160
Xscl=10
Ymin=-.25
Ymax=.1
Yscl=.1
Xres=1

Plot1

Zero
X=134.93036 Y=0

Y1= √(X2+19600)/
Plot2 Plot3

9+√(X2-320X+2920
0)/5
Y2= nDeriv(Y1,X,
X)
Y3=
Y4=

CALCULATE
1:value
2:zero
3:minimum
4:maximum

6:dy/dx
7: f(x)dx

5:intersect
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Investigation – Snell’s law
The speed of light depends on the medium through which light travels and 
is generally slower in denser media. The speed of light in a vacuum is an 
important physical constant and is exactly 299  792  458 m/s. A metre is defined 

to be the distance that light travels in a vacuum in   1 __________ 
299  792  458

   of a second. 

Typically, the speed of light in a vacuum (denoted by the letter c) is given the 
approximate value of 3 3 108  m/s, but in the Earth’s atmosphere light travels 
more slowly than that and even more slowly through glass and water.

Fermat’s principle in optics states that light travels from one point 
to another along a path for which time is a minimum. Investigate 
the path that a ray of light will follow in going from a point A in a 
transparent medium, where the speed of light is c1, to a point B in 
a different transparent medium, where its speed is c2, as illustrated 
in the diagram left. Using algebra and differentiation, prove that for 
time to be a minimum the following relationship must hold:

   
sin u1 _____ c1

   5   
sin u2 _____ c2

  . This equation is known as Snell’s law or the law

of refraction. Why is a graphics calculator not helpful? 

Assume that the two points, A and B, lie in the xy-plane and the x-axis 
(interface) separates the two media. A light ray is refracted (deflected) 
when it passes from one medium to another. u1 is the angle of incidence 
and u2 is the angle of refraction (both angles measured between ray and 
normal to the interface).

x

y

A

O

Medium 1

Normal

Medium 2

Interface

d � x

P

b

B

θ2

θ1

x

d

a

Exercise 15.5

1 Find the dimensions of the rectangle 
with maximum area that is inscribed  
in a semicircle with radius 1  cm.  
Two vertices of the rectangle are  
on the semicircle and the other  
two vertices are on the x-axis, 
as shown in the diagram.

 2 A rectangular piece of aluminium is to be rolled to make a cylinder with open 
ends (a tube). Regardless of the dimensions of the rectangle, the perimeter of 
the rectangle must be 40  cm. Find the dimensions (length and width) of the 
rectangle that gives a maximum volume for the cylinder.

 3 Find the minimum distance from the graph of the function y 5   √
__

 x   and the point 
(  3 _ 2  , 0).

 4 A rectangular box has height h  cm, width x  cm and length 2x  cm. It is designed 
to have a volume equal to 1 litre (1000  cm3).

a) Show that h 5   500 ____ x 2
    cm.

b) Find an expression for the total surface area, S  cm2, of the box in terms of x.
c) Find the dimensions of the box that produces a minimum surface area.

x

y

O(�1, 0) (1, 0)
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 5 The figure right consists of 
a rectangle ABCD and two 
semicircles on either end. 
The rectangle has an area of 
100  cm2. If x represents the 
length of the rectangle AB, 
find the value of x that makes 
the perimeter of the entire 
figure a minimum.

 6 Two vertical posts, with heights 12 
metres and 8 metres, are 10 metres 
apart on horizontal ground. A rope 
that stretches is attached to the top of 
both posts and is stretched down so 
that it touches the ground at point A 
between the two posts. The distance 
from the base of the taller post to point 
A is represented by x and the angle 
between the two sections of rope is u. 
What value of x makes u a maximum?

 7 A ladder is to be carried horizontally 
down an L-shaped hallway. The first 
section of the hallway is 2 metres 
wide and then there is a right-angled 
turn into a 3-metre wide section. 
What is the longest ladder that can be 
carried around the corner?

 8 Charlie is walking from the 
wildlife observation tower 
(point T) to the Big Desert 
Park office (point O). The 
tower is 7 km due west and 
10  km due south from the 
office. There is a road that 
goes to the office that Charlie 
can get to if she walks 10  km 
due north from the tower. 
Charlie can walk at a rate of 
2 kilometres per hour (kph) 
through the sandy terrain of 
the park, but she can walk 
a faster rate of 5  kph on the 
road. To what point, A, on the 
road should Charlie walk to 

 in order to take the least time to walk from the tower to the office? Find the 
value of d such that point A is d  km from the office.

 9 Two vertices of a rectangle are on the x-axis, and the other two vertices are on

 the curve y 5   8 ______ x 2 1 4
  . (See Exercise 15.1, question 12.) Find the maximum area of

 the rectangle.

x

A

D

B

C

10 m

8 m

12 m

x A

θ

2 m

3 m

droad

A O

10 km

7 km

T

 Hint: Write an equation for u in 
terms of x and find the value of x 
which makes u a maximum by using 
your GDC.
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10 A ship sailing due south at 16 knots is 10 nautical miles north of a second ship 
going due west at 12 knots. Find the minimum distance between the two ships.

11 Find the height, h, and the base radius, r, of the largest right circular cylinder that 
can be made by cutting it away from a sphere with a radius of R.

12 Nadia is standing at point A that is a km away in the countryside from a straight 
road XY (see diagram). She wishes to reach the point Y where the distance from 
X to Y is b km. Her speed on the road is r km/hr and her speed travelling across 
the countryside is c km/hr, such that r . c. If she wishes to reach Y as quickly as 
possible, find the position of point P where she joins the road.

13 A cone of height h and radius r is constructed from a circle with radius 10 cm by 
removing a sector AOC of arc length x cm and then connecting the edges OA 
and OC. What arc length x will produce the cone of maximum volume, and what 
is the volume?

14 Point P is a units above the line AB, 
and point Q is b units below line AB 
(see diagram). The velocity of light 
is u units/second above AB and v 
units/second below AB, and u . v. 
The angles a and b are the angles 
that a ray of light makes with a 
perpendicular (normal) to line AB 
above and below AB, respectively. 
Show that the following 
relationship must hold true.

  sin a ____ 
sin b

   5   u __ 
v

  

R

r

h

b

a

X

A

P Y

h

10 cm

10 cm

NOT TO SCALE

O OC

A

A

C

x

r

A
R

P

B

a

b

P'
Q'

Q

h
10 cm

NOT TO SCALE

r
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  1  The diagram shows the 
graph of y 5 f (x).

  Copy the grid right and sketch  
the graph of y 5 f 9(x).

  2  The diagram right shows part of the graph 
of the function f  :  x  ↦  2x 3 2 2x 2 1 8x.

   The graph intersects the x-axis at (24, 0), 
(0, 0) and (2, 0). There is a minimum point  
at C and a maximum point at D.
a)  The function may also be written in the 

form f  :  x  ↦  2 x (x 2 a)(x 2 b), where 
a , b. Write down the value of 

	 	 (i)  a  (ii)  b.

b)  Find
	 	 (i)  f 9(x)
	 	 (ii)  the exact values of x at which f 9(x) 5 0
	 	 (iii)  the value of the function at D.

	 c)  (i)  Find the equation of the tangent to the graph of f at (0, 0).
	 	 (ii)   This tangent cuts the graph of f at another point. Give the x-coordinate of this point.

  3  In a controlled experiment, a tennis 
ball is dropped from the uppermost  
observation deck (447 metres high) of  
the CN Tower in Toronto.  
The tennis ball’s velocity is given by 

        v (t ) 5 66 2 66e20.15t

  where v is in metres per 
second and t is in seconds.

Practice questions
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y

0
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�4�5 �3 �2 �1 1 2 3
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a)  Find the value of v when
	 	 (i)  t 5 0	 (ii)  t 5 10.
	 b)  (i)   Find an expression for the acceleration, a, as a function of t.
	 	 (ii)  What is the value of a when t 5 0? 
	 c)  (i)   As t becomes large, what value does v approach?
    (ii)   As t becomes large, what value does a approach?
	 	 (iii)  Explain the relationship between the answers to parts c)(i) and (ii).

	 4  Given the function f (x) 5 x 3 1 7x 2 1 8x 2 3,
a)  identify any points as a relative maximum or minimum and find their exact 

coordinates
b)  find the exact coordinates of any inflexion point(s).

	 5  Consider the function g (x) 5 2 1    1 ___ 
e 3x  .

	 a)  (i)  Find g 9(x).

	 	 (ii)   Explain briefly how this shows that g (x ) is a decreasing function for all values 
of x (i.e. that g (x ) always decreases in value as x increases).

   Let P be the point on the graph of g where x 5 2   1 _ 3  .
b)  Find an expression in terms of e for

	 	 (i)  the y-coordinate of P
	 	 (ii)  the gradient of the tangent to the curve at P.

c)  Find the equation of the tangent to the curve at P, giving your answer in the form 
  y 5 mx 1 c.

  6  Consider the function f given by f (x) 5   2x 2 2 13x 1 20  ______________ 
(x 2 1)2   , x  1.

a)  Show that f 9(x) 5   9x 2 27 _______ 
(x 2 1)3  , x  1.

  The second derivative is given by f  (x) 5   72 2 18x ________ 
(x 2 1)4   , x  1.

b)  Using values of f 9(x) and f  (x), explain why a minimum must occur at x 5 3.
c)  There is a point of inflexion on the graph of f. Write down the coordinates of this 

point.

	 7  Differentiate with respect to x:

a)  y  5    1 ________ 
(2x 1 3)2  

b)  y  5 e sin   5x

c)  y  5 tan 2(x 2)

	 8  The curve with equation y 5 Ax 1 B 1   C __ x  , x    R, x  0, has a minimum at P (1, 4) 
and a maximum at Q (21, 0). Find the value of each of the constants A, B and C.

	 9  Find   
dy

 ___ 
dx   and   

d 2y
 ___ 

dx 2   at the point (1, 1) on the curve x 3 1 y 3 5 2.

10  Differentiate with respect to x:
a)	 y 5    x ______ 

e x 2 1
    b)	 y 5 e x sin 2x  c)	 y 5 (x 2 2 1) ln (3x)

11  The normal to the curve y 5 x 2 2 4x at the point (3, 23) intersects the x-axis at point 
P and the y-axis at point Q. Find the equation of the normal and the coordinates of P 
and Q.
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12  Let y 5 h (x) be a function of x for 0 < x < 6. The graph of h has an inflexion point at 
P and a maximum point at M.

  Partial sketches of the curves of h9(x) and h (x) are shown below.

  Use the above information to answer the following.
a)  Write down the x-coordinate of P and justify your answer.
b)  Write down the x-coordinate of M and justify your answer.
c)  Given that h (3) 5 0, sketch the graph of h. On the sketch, mark the points P and M.

13  Find the equation of the normal to the curve x 2 1 xy 1 y 2 2 3y 5 10 at the point (2, 3).

14  A cylinder is to be made with an exact volume of 128p  cm3. 
What should be the height h and the radius r of the 
cylinder’s base so that the cylinder’s surface area is a 
minimum?

15  A rectangle has its base on the 
x-axis and its upper two vertices 
on the parabola y 5 12 2 x 2, as 
shown in the diagram. What is the 
largest area that the rectangle can 
have, and what are its dimensions 
(i.e. length and width)?
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16  The figure below shows the graph of a function y 5 f (x). At which one of the five 
points on the graph:
a)  are f 9(x) and f  (x) both negative?
b)  is f 9(x) negative and f  (x) positive?
c)  is f 9(x) positive and f  (x) negative?

17  Find the equation of the normal to the curve with equation y 5   2x 2 1 ______ x 1 2
    at the point 

(23, 7).

18  Find the equation of a) the tangent, and b) the normal to the curve y 5 ln (4x 2 3) at 
the point (1, 0).

19  Consider the function f (x) 5 x 2 ln x.
a)	 Find the exact coordinates of any stationary points. Indicate whether it is a 

maximum or minimum (and absolute or relative).
b)	 Find the exact coordinates of any inflexion points.

20  a)	 Determine the constant a such that the function f (x) 5 x 2 1   a __ x    has (i) a local  
  minimum at x 5 2 and (ii) a local minimum at x 5 23.
c)	 Show that the function cannot have a local maximum for any value of a.

21  A line passes through the point (3, 2) and intersects both the x-axis and the y-axis, 
forming a triangular region in the first quadrant bounded by the x-axis, the y-axis and 
the line. Find the equation of such a line that creates a triangle of minimum area.

22  Find the equation of both the tangent and normal to the curve y 5 x tan x at the point 
where x 5   p __ 

4
  .

23  A very important function in statistics is the equation for the standard	normal	curve

(mean 5 0, standard deviation 5 1) given by f (x) 5     e 
2   x

2
 __ 

2
  
  _____ 

  √
____

 (2p)  
  .

a)	 Find the coordinates of any stationary points and of any inflexion points.
b)	 What happens when x → , and when x → 2? Give the equation for any 

asymptotes.
c)	 Sketch a graph of f (x) and indicate the location of any of the points found in part a).

24  Let f be the function given by f (x) 5 2 ln (x 2 1 3) 2 x.
a)	 Find the x-coordinate of each maximum and minimum point of f. Justify your 

answer(s).
b)	 Find the x-coordinate of each inflexion point of f. Justify your answer(s).

25  The rate at which cars on a road pass a certain point is known as the flow rate and is in 
units of cars per hour. The flow rate, F, of a certain road is given by 

  F (x) 5    2x ___________  
18 1 0.015x 2   where x is the speed of the traffic in kilometres per hour. What

  speed will maximise the flow rate on the road?

x

y

A
B

C
D

E

0
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26  If 2x 2 2 3y 2 5 2, find the two values of   
dy

 ___ 
dx   when x 5 5.

27  Differentiate y 5 arccos(1 2 2x 2) with respect to x, and simplify your answer.

28  For the function f : x ↦ x 2 1n x, x > 0, find the function f 9, the derivative of f with 
respect to x.

29  For the function f : x ↦   1 _ 2   sin 2x 1 cos x, find the possible values of sin x for which
 f 9(x) 5 0.

30  Find the gradient of the tangent to the curve 3x 2 1 4y 2 5 7 at the point where x 5 1 
and y . 0.

31  If f (x) 5 ln (2x 2 1), x .   1 _ 2  , find
a)	 f 9(x)
b)	 the value of x where the gradient of f (x) is equal to x.

32  Find the x-coordinate, between 22 and 0, of the point of inflexion on the graph of the 
function f : x ↦ x 2e x. Give your answer to 3 decimal places.

33  A normal to the graph of y 5 arctan (x 2 1), for x . 0, has equation y 5 22x 1 c, 
where c R. Find the value of c.

34  The function f is given by f : x ↦  e 11sin px , x > 0.
a)	 Find f 9(x).

Let xn be the value of x where the (n 1 1)th maximum or minimum point occurs, n  
{N} (i.e. x 0 is the value of x where the first maximum or minimum occurs, x1 is the value 
of x where the second maximum or minimum occurs, etc.).
b)	 Find xn in terms of n.

35  Let f (x) 5 x( 3 √
________

 (x 2 2 1)2  ), 21.4 < x < 1.4.
a)	 Sketch the graph of f (x). (An exact scale diagram is not required.)

On your graph indicate the approximate position of
	 	 (i)  each zero
	 	 (ii)  each maximum point
	 	 (iii)  each minimum point.

b)	 	(i)  Find f 9(x), clearly stating its domain.
	 	 (ii)  Find the x-coordinates of the maximum and minimum points of f (x), 

    for 21 , x , 1.
c)	 Find the x-coordinate of the point of inflexion of f (x), where x . 0, giving your 

answer correct to four decimal places.

36  The line y 5 16x 2 9 is a tangent to the curve y 5 2x 3 1 ax 2 1 b x 2 9 at the point 
(1, 7). Find the values of a and b.

37  Consider the function y 5 tan x 2 8 sin x.

a)	 Find   
d y

 ___ 
d x  .  b)	Find the value of cos x for which   

d y
 ___ 

d x   5 0.

38  Consider the tangent to the curve y 5 x 3 1 4x 2 1 x 2 6.
a)	 Find the equation of this tangent at the point where x 5 21.
b)	 Find the coordinates of the point where this tangent meets the curve again.

39  Let y 5 sin (kx) 2 kx cos (kx), where k is a constant.

Show that   
d y

 ___ 
d x   5 k2x sin (kx).
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40  A curve has equation xy 3 1 2x 2y 5 3. Find the equation of the tangent to this curve at 
the point (1, 1).

41  The function f is defined by

f (x) 5   x
 2 2 x 1 1 __________ x 2 1 x 1 1

   .

a)	 	(i)  Find an expression for f 9(x), simplifying your answer.
	 	 (ii)  The tangents to the curve of f (x) at points A and B are parallel to the x-axis. 

    Find the coordinates of A and of B.
b)	 	(i)  Sketch the graph of y 5 f 9(x).

	 	 (ii)  Find the x-coordinates of the three points of inflexion on the graph of f.
c)	 Find the range of

	 	 (i)  f
	 	 (ii)  the composite function f ° f.

42  Air is pumped into a spherical ball which expands at a rate of 8 cm3 per second 
  (8 cm3 s21). Find the exact rate of increase of the radius of the ball when the radius is 

2 cm.

43  A curve has equation x 3y 2 5 8. Find the equation of the normal to the curve at the 
point (2, 1).

44  The function f is defined by f (x) 5   x
 2
 ___ 

2x  , for x . 0.
a)	 	(i)  Show that

f 9(x) 5   2x 2 x 2 ln 2 __________ 
2x    .

	 	 (ii)  Obtain an expression for f (x), simplifying your answer as far as possible.
b)	 	(i)  Find the exact value of x satisfying the equation f 9(x) 5 0.

	 	 (ii)  Show that this value gives a maximum value for f (x).
c)	 Find the x-coordinates of the two points of inflexion on the graph of f.

45  Consider the function f (t) 5 3 sec2 t 1 5t.
a)	 Find f 9(t).
b)	 Find the exact values of

	 	 (i)  f (p)
	 	 (ii)  f 9(p).

46  Consider the equation 2xy 2 5 x 2y 1 3.
a)	 Find y when x 5 1 and y , 0.

b)	 Find   
d y

 ___ 
d x   when x 5 1 and y , 0.

47  Let y 5 e 3x sin (px).

a)	 Find   
d y

 ___ 
d x   .

b)	 Find the smallest positive value of x for which   
d y

 ___ 
d x   5 0.

48  An airplane is flying at a constant speed 
at a constant altitude of 3 km in a straight  
line that will take it directly over an observer  
at ground level. At a given instant the  
observer notes that the angle u is   1 _ 3  p 
radians and is increasing at   1 __ 60   radians per 
second. Find the speed, in kilometres per  
hour, at which the airplane is moving towards the observer.

3 km

Observer

Plane
x

θ
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49  A curve has equation f (x) 5    a ________ 
b 1 e2c  

  , a  0, b . 0, c . 0.

a)	 Show that f (x) 5   
ac 2e2c x(e2c x 2 b)

  ______________  
(b 1 e2

 cx )3   .

b)	 Find the coordinates of the point on the curve where f (x) 5 0.
c)	 Show that this is a point of inflexion.

50  The point P(1, p), where p . 0, lies on the curve 2x 2y 1 3y 2 5 16.
a)	 Calculate the value of p.
b)	 Calculate the gradient of the tangent to the curve at P.

51  The function f is defined by f: x ↦ 3x.
Find the solution of the equation f (x) 5 2.

52  The following diagram shows an isosceles triangle ABC with AB 5 10 cm and 
AC 5 BC. The vertex C is moving in a direction perpendicular to (AB) with speed 2 cm 
per second.

Calculate the rate of increase of the angle CA^B at the moment the triangle is 
equilateral.

53  If y 5 ln(2x 2 1), find   
d 2y

 ___ 
dx 2  .

54  Find the equation of the normal to the curve x 3 1 y 3 2 9xy 5 0 at the point (2, 4).

55  The function f 9 is given by f 9(x) 5 2 sin  ( 5x 2   p __ 
2
   ) .

a)	 Write down f (x).

b)	 Given that f   (   p __ 
2
   )  5 1, find f (x).

56  Find the gradient of the normal to the curve 3x 2y 1 2xy 2 5 2 at the point (1, 22).

57  The function f is given by f (x) 5   x
 5 1 2 ______ 
x
   , x  0. There is a point of inflexion on the

  graph of f at the point P. Find the coordinates of P.

58  An experiment is carried out in which the number n of bacteria in a liquid is given 
by the formula n 5 650e kt, where t is the time in minutes after the beginning of the 
experiment and k is a constant. The number of bacteria doubles every 20 minutes. Find
a)	 the exact value of k
b)	 the rate at which the number of bacteria is increasing when t 5 90.

59  Let f be a cubic polynomial function. Given that f (0) 5 2, f 9(0) 5 23, f (1) 5 f 9(1) and 
f (21) 5 6, find f (x).

60  Let f (x) 5 cos3 (4x 1 1), 0 < x < 1.
a)	 Find f 9(x).
b)	 Find the exact values of the three roots of f 9(x) 5 0.

C

A B

c x

c xc x

c x
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61  Given that 3x 1 y 5 x 3 1 3y, find   
dy

 ___ 
dx  .

62  Let f be the function defined for x . 2   1 _ 3   by f (x) 5 ln(3x 1 1).
a)	 Find f 9(x).
b)	 Find the equation of the normal to the curve y 5 f (x) at the point where x 5 2.

  Give your answer in the form y 5 ax 1 b where a, b  R.

63  Let y 5 x arcsin x, x  (21, 1). Show that   
d 2y

 ___ 
dx 2   5    2 2x 2

 ________ 
(1 2 x 2 )   

3 _ 2   
  .

64  Given that e x y 2 y 2 ln x 5 e for x > 1, find   
dy

 ___ 
dx   at the point (1, 1).

65  The function f is defined by f (x) 5    2x ______ x 2 1 6
   for x > b where b  R.

a)	 Show that f 9(x) 5   12 2 2x 2
 ________ 

(x 2 1 6)2  .

b)	 Hence, find the smallest exact value of b for which the inverse function f 21 exists. 
Justify your answer.

66  Consider the curve with equation x 2 1 xy 1 y 2 5 3.
a)	 Find in terms of k, the gradient of the curve at the point (21, k).
b)	 Given that the tangent to the curve is parallel to the x-axis at this point, find the 

value of k.

67  Find the gradient of the tangent to the curve x 3y 2 5 cos (py) at the point (21, 1).

68  André wants to get from point A located in the sea to point Y located on a straight 
stretch of beach. P is the point on the beach nearest to A such that AP 5 2 km and 
PY 5 2 km. He does this by swimming in a straight line to a point Q located on the 
beach and then running to Y.

When André swims he covers 1 km in 5  √
__

 5   minutes. When he runs he covers 1 km in 5 
minutes.
a)	 If PQ 5 x km, 0 < x < 2, find an expression for the time T minutes taken by André 

to reach point Y.

b)	 Show that   dT ___ 
dx   5    5  √

__
 5  x _______ 

  √
______

 x 2 1 4  
   2 5.

c)	 	(i)  Solve   dT ___ 
dx   5 0.

	 	 (ii)   Use the value of x found in part c) (i) to determine the time, T minutes, taken 
for André to reach point Y.

	 	 (iii)  Show that   d
 2T ___ 

dx 2   5    20  √
__

 5   ________ 
(x 2 1 4 )   

3 _ 2   
   and hence show that the time found in part c)

	 	 	 is a minimum.

A

P

2 km

2 km
Y

Q
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69  The function f is defined by f (x) 5 xe 2x.

It can be shown that f  (n)(x) 5 (2nx 1 n 2n21)e 2x for all n  핑1, where f  (n)(x) represents 
the n th derivative of f  (x).
a)	 By considering f  (n)(x) for n 5 1 and n 5 2, show that there is one minimum point P 

on the graph of f, and find the coordinates of P.
b)	 Show that f has a point of inflexion Q at x 5 21.
c)	 Determine the intervals on the domain of f  where f is

	 	 (i)  concave up
    (ii)  concave down.

d)	 Sketch f 9, clearly showing any intercepts, asymptotes and the points P and Q.
e)	 Use mathematical induction to prove that f  (n)(x) 5 (2nx 1 n 2n 2 1)e 2x for all 

n  핑1, where f  (n)(x) represents the n th derivative of f  (x).

70  The diagram below shows the boundary of the cross-section of a water channel.

The equation that represents this boundary is y 5 16 sec  (   px ___ 
36

   )  2 32 where x and y 
are both measured in cm.

The top of the channel is level with the ground and has a width of 24 cm. The maximum 
depth of the channel is 16 cm.
Find the width of the water surface in the channel when the water depth is 10 cm. Give 
your answer in the form a arccos b where a, b  R.

71  The graphs given below are those of the same function y 5 f  (x) for a < x < b. 

Sketch, on the given axes, the graphs of a)   
dy

 ___ 
dx   and b)   

d 2y
 ___ 

dx 2  .

Indicate clearly the positions of any asymptotes.

Questions 26–71 © International Baccalaureate Organization
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Integral Calculus16

In Chapters 13 and 15 you learned about the process of differentiation. 
That is, given a function, how you can find its derivative. In this chapter, we 
will look at the reverse process. That is, given a function f (x), how can we 
find a function F (x) whose derivative is f (x). This process is the opposite of 
differentiation and is therefore called anti-differentiation.

 16.1 Anti-derivative

An anti-derivative of the function f (x) is a function F (x) such that

  d ___ 
dx   F (x) 5 F 9(x) 5 f (x) wherever f (x) is defined.

For instance, let f (x) 5 x 2. It is not difficult to discover an anti-derivative 
of f (x). Keep in mind that this is a power function. Since the power rule 
reduces the power of the function by 1, we examine the derivative of x 3:

  d ___ 
dx 

  (x 3) 5 3x 2.

This derivative, however, is 3 times f (x). To ‘compensate’ for the ‘extra’ 3, 
we have to multiply by   1 _ 3  , so that the anti-derivative is now   1 _ 3   x 3. Now,

  d ___ 
dx

    (   1 __ 
3

   x 3 )  5 x 2.

And, therefore,   1 _ 3   x 3 is an anti-derivative of x 2.

Table 16.1 shows some examples of functions, each paired with one of its 
anti-derivatives.

Introduction

Function 
f (x)

Anti-derivative 
F (x)

1 x

x   x 2 __ 
2

  

3x 2 x 3

x 4   x 5 __ 5  

cos  x sin  x
cos  2 x   1 _ 2    sin  2x

e x e x

sin  x 2cos  x
2x x 2

Assessment statements
6.4	 Indefinite	integration	as	anti-differentiation.
	 Indefinite	integral	of	x n,	sin	x,	cos	x,	1/x	and	e x.
	 The	composites	of	any	of	these	with	a	linear	function.
6.5	 Anti-differentiation	with	a	boundary	condition	to	determine	the	constant		

term.
	 Definite	integrals.
	 Area	of	the	region	enclosed	by	a	curve	and	the	x-axis	or	y-axis	in	a	given	interval.

Areas	of	regions	enclosed	by	curves.
	 Volumes	of	revolution	about	the	x-axis	or	y-axis.
6.6	 Kinematic	problems	involving	displacement	s,	velocity	v	and	acceleration	a.

Total	distance	travelled.
6.7	 Further	integration:	integration	by	substitution;	integration	by	parts.

Table 16.1
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The diagrams below show the relationship between the derivative and the 
integral as opposite operations.

Example 1 

Given the function f (x) 5 3x 2, find an anti-derivative of f (x).

Solution

F1(x) 5 x 3 is such an anti-derivative because   d ___ 
dx

   (F1(x)) 5 3x 2.

The following functions are also anti-derivatives because the derivative of 
each one of them is also 3x 2.

H1 (x) 5 x  3 1 27, H2 (x) 5 x  3 2 p, or H3 (x) 5 x  3 1  √
__

 5  

Indeed, F (x) 5 x 3 1 c is an anti-derivative of f (x) 5 3x 2 for any choice of 
the constant c.

This is so simply because

(F (x) 1 c)9 5 F 9(x) 1 c 9 5 F 9(x) 1 0 5 f (x)!

Thus, we can say that any single function f (x) has many anti-derivatives, 
whereas a function can have only one derivative.

If F (x) is an anti-derivative of f (x), then so is F (x) 1 c for any choice of the constant c. 

Stated slightly differently, this observation says: 

If F (x) is an anti-derivative of f (x) over a certain interval I, then every anti-derivative of 
f (x) on I is of the form F (x) 1 c.

This statement is an indirect conclusion of one of the results of the mean 
value theorem.

Anti-derivative
F(x)

Derivative
f �(x)

Function
f(x)

Anti-di�erentiation

Di�erentiation

F(x)

f(x)

Anti-di�erentiation Di�erentiation
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Two functions with the same derivative on an interval differ only by a constant on that 
interval.

We will state the mean value theorem here in order to establish the general 
rule for anti-derivatives.

Mean value theorem
A function H(x), continuous over an interval [a, b] and differentiable over ]a, b[, satisfies

H(b) 2 H(a) 5 (b 2 a)H 9(c) for some c  ]a, b[ .

Let F (x) and G (x) be any anti-derivatives of f (x), i.e. F 9(x) 5 G 9(x).

Take H(x) 5 F (x) 2 G (x) and any two numbers x 1 and x 2 in the interval 
[a,  b] such that x 1 , x 2, then 

H(x 2) 2 H(x 1)  5 (x 2 2 x 1)H 9(c) 5 (x 2 2 x 1)(F 9(c) 2 G 9(c))
5 (x 2 2 x 1)0 5 0 ⇒ H (x 1) 5 H (x 2)

which means that H(x) is a constant function. 
Hence, H (x) 5 F (x) 2 G (x) 5 constant. That is, any two anti-derivatives 
of a function differ by a constant.

Notation:
The notation 

∫ f (x) dx 5 F (x) 1 c  (1)

where c is an arbitrary constant, means that F (x) 1 c is an anti-derivative 
of f (x). 

Equivalently, F (x) satisfies the condition that 

  d ___ 
dx

   (F (x)) 5 F 9(x) 5 f (x)  (2)

for all x in the domain of f (x).

It is important to note that (1) and (2) are just different notations to 
express the same fact. For example, 

∫ x 2dx 5   1 _ 3   x 3 1 c is equivalent to   d ___ 
dx

    (   1 _ 3   x 3 )  5 x 2.

Note that if we differentiate an anti-derivative of f (x), we obtain f (x) back again. 

Thus,   d ___ 
dx   (∫ f (x)dx) 5 f (x).

The expression ∫ f (x)dx is called an indefinite integral of f (x). The function f (x) is called the integrand and the constant c is 
called the constant of integration. 

The integral symbol ∫ is made like an elongated capital S. It is, in fact, a medieval S, used by Leibniz as an abbreviation for the 
Latin word summa. 

We think of the combination ∫ [ ]dx as a single symbol; we fill in the ‘blank’ with the formula of the function whose anti-
derivative we seek. We may regard the differential dx as specifying the independent variable x both in the function f (x) and in 
its anti-derivatives. 

If an independent variable other than x is used, say t, the notation must be adjusted appropriately. 

Thus,   d __ 
dt

   (∫ f (t)dt ) 5 f (t) and ∫ f (t)dt 5 F (t) 1 c are equivalent statements.
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Derivative formula Equivalent integration formula

  d ___ 
dx   (x 3) 5 3x 2 ∫ 3x 2dx 5 x 3 + c

  d ___ 
dx   ( √__

 x  ) 5   1 ____ 2 √
__

 x    ∫   1 ____ 
2 √

__
 x     dx 5  √

__
 x    + c

  d __ 
dt

   (tan t) 5 sec2  t ∫ sec2  t  dt 5 tan  t 1 c

  d __ 
dv

    (  v    
3
 _ 2    )  5   3 _ 2    v    

1
 _ 2   ∫   3 _ 2    v   

1
 _ 2     dv 5  v    

3
 _ 2    1 c

Basic integration formulae
Integration is essentially educated guesswork – given the derivative f (x) of 
a function F (x), we try to guess what the function F (x) is. However, many 
basic integration formulae can be obtained directly from their companion 
differentiation formulae. Some of the most important are given in Table 16.2.

Differentiation formula Integration formula

1   d ___ 
dx   (x) 5 1 ∫ dx 5 x 1 c

2   d ___ 
dx   (x n 1 1) 5 (n 1 1) x n, n  21 ∫ x n dx 5   x n 1 1

 _____ 
n 1 1

   1 c, n  21

3   d ___ 
dx   (sin  x) 5 cos  x ∫ cos  x  dx 5 sin  x 1 c

4   d ___ 
dx   (cos  x) 5 2sin  x ∫ sin  v  dv 5 2cos  v 1 c

5   d __ 
dt

   (tan t) 5 sec2  t ∫ sec2  t  dt 5 tan  t 1 c

6   d __ 
dv

   (ev) 5 ev ∫ ev  dv 5 ev 1 c

7   d ___ 
dx   (ln |x|) 5   1 __ x  ∫   1 __ x   dx 5 ln |x| 1 c

8   d ___ 
dx   (   ax

 ___ 
ln a

   )  5 ax ∫ axdx 5   1 ___ 
ln a

   ax 1 c

9   d ___ 
dx  (arcsin x) 5   1 _______ 

  √
______

 1 2 x 2  
  ∫    dx _______ 

  √
______

 1 2 x 2  
   5 arcsin x 1 c

10   d ___ 
dx  (arctan x) 5   1 ______ 

1 1 x 2  ∫    dx ______ 
1 1 x 2   5 arctan x 1 c

Formula (7) is a special case of the ‘power’ rule formula (2), but needs 
some modification.

If we are given the task to integrate   1 __ x   , we may attempt to do it using the 
power rule:

∫   1 __ x   dx 5 ∫ x 21 dx 5   1 ________ 
(21) 1 1

   x (21) 1 1 1 c 5   1 __ 
0

   x 0 1 c, which is undefined. 

However, the solution is clearly found by observing what you learned in 
Chapter 15. 

Note: The integral sign and differential serve as delimiters, adjoining the integrand 
on the left and right, respectively. In particular, we do not write ∫dx f (x) when we 
mean ∫ f (x) dx.

Table 16.2
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In Section 15.3 you learned that

  d ___ 
dx

   (ln  x) 5   1 __ x  ,  x . 0.

This implies

∫   1 __ x   dx 5 ln  x 1 c, x . 0.

However, the function   1 __ x   is differentiable for x , 0 too. So, we must be able 
to find its integral. 

The solution lies in the chain rule!

If x , 0, we can write x 5 2u where u . 0. Then dx 5 2du, and 

∫   1 __ x   dx 5 ∫   1 ___ 2u   (2du) 5 ∫   1 __ u   du 5 ln  u 1 c, u . 0.

But u 5 2x, therefore when x , 0

∫   1 __ x   dx 5 ln  u 1 c 5 ln(2x) 1 c, and, combining the two results, we have

∫   1 __ x   dx 5 ln |x | 1 c, x  0.

Suppose that f (x) and g (x) are differentiable functions and k is a constant, then:
1. A constant factor can be moved through an integral sign, i.e.

∫ kf (x)dx 5  k∫ f (x)dx
2. An anti-derivative of a sum (difference) is the sum (difference) of the anti-derivatives, 

i.e.

∫ (f (x) 1 g (x))dx 5 ∫ f (x)dx 1 ∫ g (x)dx, or ∫ (f (x) 2 g (x))dx 5 ∫ f (x)dx 2∫ g (x)dx

Example 2 

Evaluate:
a) ∫ 3  cos  x  dx  b)  ∫ (x 3 1 x 2)dx

Solution

a) ∫ 3  cos  x  dx 5 3∫ cos  x  dx 5 3  sin  x 1 c

b) ∫ (x 3 1 x 2)dx 5 ∫ x 3  dx 1 ∫ x 2  dx 5   x 4 __ 4   1   x 3 __ 
3

   1 c

Sometimes it is useful to rewrite the integrand in a different form before 
performing the integration.

Example 3 

Evaluate:

a) ∫   t 
3 2 3t 5 _______ 

t5     dt  b)  ∫   x 1 5x 4 _______ 
x 2

     dx

Solution

a) ∫   t 
3 2 3t 5 _______ 

t5    dt 5 ∫  
t 3

 __ 
t 5

    dt 2 ∫  
 3t 5

 ___ 
t 5

    dt 5 ∫t 22  dt 2 ∫ 3  dt 5   t
21

 ___ 
21

   2 3t 1 c 

  5   21 ___ t    2 3t 1 c

b) ∫   x 1 5x 4 _______ 
x 2

    dx 5 ∫  
x
 __ 

x 2
    dx 1∫   5x 4 ___ 

x 2    dx 5 ∫  
1

 __ x    dx 1 ∫ 5x 2  dx 5 ln|x | 1 5    x 3 __ 
3

   1 c
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Integration by simple substitution
In this section, we will study a technique called substitution that can often 
be used to transform complicated integration problems into simpler ones.

The method of substitution depends on our understanding of the chain 
rule as well as the use of variables in integration. Two facts to recall:

1. When we find an anti-derivative, we established earlier that the use of 
x is arbitrary. We can use any other variable as you have seen in several 
exercises and examples so far.

 So, ∫ f (u) du 5 F (u) 1 c, where u is a ‘dummy’ variable in the sense that 
it can be replaced by any other variable.

2. The chain rule enables us to say

  d ___ 
dx

   (F (u(x))) 5 F 9(u(x))u 9(x).

This can be written in integral form as

∫ F 9 (u(x))u 9(x) dx 5 F (u(x)) 1 c

or, equivalently, since F (x) is an anti-derivative of f (x),

∫ f (u(x))u 9(x) dx 5 F (u(x)) 1 c.

For our purposes, it will be useful and simpler to let u(x) 5 u and to write 

  du ___ 
dx

   5 u 9(x) in its ‘differential’ form du 5 u 9(x)dx, or, simply, du 5 u 9dx.

With this notation, the integral can now be written as

∫ f (u(x))u 9(x) dx 5 ∫f (u) du 5 F (u) 1 c.

The following example explains how the method works.

Example 4 
Evaluate:
a) ∫ (x 3 1 2)10 3x 2 dx  b) ∫ tan  x dx

c) ∫ cos  5x dx  d) ∫ cos  x 2x dx

e) ∫ e 3x 1 1 dx

Solution
a) To integrate this function, it is simplest to make the following 

substitution.
 Let u 5 x 3 1 2, and so du 5 3x 2 dx. Now the integral can be written as

∫ (x 3 1 2)10 3x 2 dx 5 ∫ u 10 du 5   u 11
 ___ 

11
   1 c 5   

(x 3 1 2)11

 _________ 
11

   1 c.

b) This integrand has to be rewritten first and then we make the substitution.

∫ tan  x dx 5 ∫  
sin  x

 ____ cos x    dx 5 ∫  
1
 ____ cos  x      sin  x dx

We now let u 5 cos  x ⇒ du 5 2sin  x dx, and

∫ tan  x dx 5 ∫  
1
 ____ cos  x   sin  x dx 5 ∫  

1
 __ u   (2du) 5 2∫  

1
 __ u   du 5 2ln|u| 1 c.
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This last result can be then expressed in one of two ways:

∫ tan  x dx 5 2ln|cos x | 1 c, or

∫ tan  x dx 5 2ln|cos x | 1 c 5 ln|(cos  x)21| 1 c

 5 ln |    1 ______ 
(cos  x)

   |  1 c 5 ln|sec x | 1 c

c) We let u 5 5x, then du 5 5dx ⇒ dx 5   1 _ 5   du, and so

∫ cos  5x dx 5 ∫ cos  u    1 _ 5   du 5   1 _ 5   ∫ cos  u  du 5   1 _ 5     sin  u 1 c 

 5   1 _ 5      sin  5x 1 c.

Another method can be applied here:

The substitution u 5 5x requires du 5 5dx. As there is no factor of 5 in 
the integrand, and since 5 is a constant, we can multiply and divide by 5 so 
that we group the 5 and dx to form the du required by the substitution:

∫ cos  5x dx 5   1 _ 5   ∫ cos  x 5dx 5   1 _ 5   ∫ cos  u  du 5   1 _ 5     sin  u 1 c 

 5   1 _ 5      sin  5x 1 c

d) By letting u 5 x 2, du 5 2x  dx and so

∫ cos  x 2 x dx 5   1 _ 2  ∫ cos  x 2 2x dx 5   1 _ 2  ∫ cos  u  du 5   1 _ 2     sin  u  1 c

 5   1 _ 2     sin  x 2  1 c.

e) ∫ e 3x 1 1 dx 5   1 _ 3   ∫e 3x 1 1 3dx 5   1 _ 3   ∫eu du 5    1 _ 3  eu 1 c 5    1 _ 3  e 3x 1 1 1 c

Note: The main challenge in using the substitution rule is to think of an 
appropriate substitution. You should try to select u to be a part of the 
integrand whose differential is also included (except for the constant). In 
Example 4a), we selected u to be (x 3 1 2) knowing that du 5 3x 2dx. Then 
we ‘compensated’ for the absence of 3! Finding the right substitution is a bit 
of an art. You need to acquire it! It is quite usual that your first guess may 
not work. Try another one!

Example 5 

Evaluate each integral.

a) ∫ e 23x dx  b) ∫ sin 2  x  cos  x dx

c) ∫ 2  sin(3x 2 5) dx d) ∫ e mx 1 n dx

e) ∫ x √
__

 x   dx, and F (1) 5 2

Solution

a) Let u 5 23x, then du 5 23dx, and

∫ e 23x dx 5 2   1 _ 3  ∫ e 23x(23dx) 5 2   1 _ 3  ∫ e u du 5 2   1 _ 3   e u 1 c 

 5 2   1 _ 3   e 23x 1 c.

b) Let u 5 sin  x, then du 5 cos  x  dx, and

∫ sin 2  x    cos  x dx 5 ∫ u 2 du 5   1 _ 3   u 3 1 c 5   1 _ 3     sin3  x 1 c.

In integration, multiplying by 
a constant ‘inside’ the integral 
and ‘compensating’ for that 
with the reciprocal ‘outside’ the 
integral depends on theorem 1 
(page 775). That is, 

∫ kf (x)dx 5 k∫ f (x)dx.

However, you cannot multiply 
with a variable. So, you cannot 
say, for example,

∫ cos  x 2  dx 5   1 ___ 2x  ∫cos  x 2 2x dx.
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Differentiation formula Integration formula

1   d ___ 
dx  (u(x)) 5 u9(x) ⇒ du 5 u9(x)dx ∫du 5 u 1 c

2   d ___ 
dx   (    un 1 1

 ______ 
(n 1 1)

   )  5 unu9(x), n  21 ⇒ d (   un 1 1
 ______ 

(n 1 1)
    ) 5 unu9(x)dx ∫undu 5   u

n 1 1
 _____ n 1 1   1 c, n  21

3   d ___ 
dx  (sin(u)) 5 cos(u)u9(x) ⇒ d(sin(u)) 5 cos(u)u9(x)dx ∫cos u du 5 sin u 1 c

4   d ___ 
dx  (2cos(u)) 5 sin(u)u9(x) ⇒ d(2cos(u)) 5 sin(u)u9(x)dx ∫sin u du 5 2cos u 1 c

5   d __ 
dt

  (tan u) 5 sec2 u u9(t) ⇒ d(tan u) 5 sec2 u u9(t)dt ∫sec2 u du 5 tan u 1 c

6   d ___ 
dx  (eu) 5 euu9(x)dx ⇒ d(eu) 5 euu9(x)dx ∫eudu 5 eu 1 c

7   d ___ 
dx  (ln|u|) 5   1 __ 

u
  u9(x) ⇒ d(ln|u|) 5   1 __ 

u
  u9(x)dx ∫  1 __ 

u
  du 5 ln|u| 1 c

8   d ___ 
dx   (   au

 ___ 
ln a

   )  5 auu9(x) ⇒ d (   au
 ___ 

ln a
   )  5 auu9(x)dx ∫audu 5   au

 ___ 
ln a

   1 c

9   d ___ 
dx  (arcsin u) 5   1 _______ 

  √
______

 1 2 u2  
   u9(x) ⇒ d(arcsin u) 5   1 _______ 

  √
______

 1 2 u2  
   u9(x)dx ∫  du _______ 

  √
______

 1 2 u2  
   5 arcsin u 1 c

10   d ___ 
dx  (arctan u) 5   1 ______ 

1 1 u2   u9(x) ⇒ d(arctan u) 5   1 ______ 
1 1 u2   u9(x)dx ∫  du ______ 

1 1 u2   5 arctan u 1 c

c) Let u 5 3x 2 5, then du 5 3dx, and

   ∫ 2 sin(3x 2 5) dx 5 2   1 _ 3  ∫ sin(3x 2 5)3dx 5   2 _ 3  ∫ sin u du

  5 2   2 _ 3   cos  u 1 c 5 2   2 _ 3   cos(3x 2 5) 1 c.

d) Let u 5 mx 1 n, then du 5 m  dx, and

  ∫e mx 1 n dx 5   1 __ m  ∫ e mx 1 n m  dx 5    1 __ m  ∫ e u du 

  5   1 __ m   e u 1 c 5   1 __ m   e mx 1 n  1 c.

e) F (x) 5 ∫x √
__

 x   dx 5 ∫ x    
3
 _ 2    dx 5    x    

5
 _ 2    ___ 

 (   5 _ 2   ) 
   1 c 5   2 _ 5    x    

5
 _ 2    1 c, but F (1) 5 2

F (1) 5   2 _ 5    1   
5
 _ 2    1 c 5   2 _ 5   1 c 5 2 ⇒ c 5   8 _ 5  

Therefore, F (x) 5   2 _ 5    x    
5
 _ 2    1   8 _ 5   .

The previous discussion makes it clear that Table 16.2 is limited in scope, 
because we cannot use the integrals directly to evaluate composite integrals 
such as the ones in Examples 4 and 5 above. An adjusted table is therefore 
presented here.

Table 16.3
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Example 6�

Evaluate each integral.

a) ∫  √
_______

 6x 1 11  dx

b) ∫(5x 3 1 2)8x 2dx

c) ∫   x 3 2 2 _____________  
 
5
 √
___________

 x 4 2 8x 1 13  
  dx

d) ∫sin4(3x 2)cos(3x 2)xdx

Solution

a) We let u 5 6x 1 11 and calculate du:

u 5 6x 1 11 ⇒ du 5 6dx

Since du contains the factor 6, the integral is still not in the proper form 
∫f (u)du. However, here we can use of two approaches:

(i) Introduce the factor 6, as we have done before, i.e.

∫  √
_______

 6x 1 11  dx 5   1 _ 6   ∫  √
_______

 6x 1 11   6dx

5   1 _ 6  ∫   √
__

 u   du  5   1 _ 6   ∫ u    
1
 _ 2    du

5   1 _ 6      u    
3
 _ 2    __ 

  3 _ 2  
   1 c 5   2 __ 18    u    

3
 _ 2    1 c

5   1 _ 9   (6x 1 11 )    
3
 _ 2    1 c

Or,

(ii) Since u 5 6x 1 11 ⇒ du 5 6dx ⇒ dx 5   du ___ 
6

  , then

∫  √
_______

 6x 1 11  dx 5 ∫  √
__

 u     du ___ 
6

   5   1 _ 6   ∫ u    
1
 _ 2    du, then we follow the 

same steps as before.

b) We let u 5 5x 3 1 2, then du 5 15x 2dx. This means that we need to 
introduce the factor 15 into the integrand:

∫(5x 3 1 2)8x 2dx 5   1 ___ 
15

  ∫(5x 3 1 2)815x 2dx

5   1 ___ 
15

  ∫u8du 5   1 ___ 
15

     u
9
 __ 

9
   1 c

5   1 ___ 
135

   (5x 3 1 2)9 1 c

c) We let u 5 x 4 2 8x 1 13 ⇒ du 5 (4x 3 2 8)dx 5 4(x 3 2 2)dx.

∫   x 3 2 2 _____________  
 
5
 √
___________

 x 4 2 8x 1 13  
   dx 5   1 __ 4  ∫  

4(x 3 2 2)dx
  _____________  

 
5
 √
___________

 x 4 2 8x 1 13  
   5   1 __ 4  ∫  du ___ 

 u    
1
 _ 5   
  

5   1 __ 4    u 2   1 _ 5   du 5   1 __ 4      u   
4
 _ 5    __ 

  4 _ 5  
   1 c

5   5 ___ 
16

   (x 4 2 8x 1 13 )   
4
 _ 5    1 c
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d) We let u 5 sin(3x 2) ⇒ du 5 cos(3x 2)6x dx using the chain rule!

∫sin4(3x 2)cos(3x 2)x dx 5   1 __ 
6

  ∫sin 4(3x 2)cos(3x 2)6x dx

5   1 __ 
6

  ∫u4du 5   1 __ 
6

     u 5 __ 5   1 c

5   1 ___ 
30

   sin5(3x 2) 1 c

In questions 1–15, find the most general anti-derivative of the function. 

 1 f (x) 5 x 1 2  2 f (t) 5 3t2 2 2t 1 1

 3 g (x) 5   1 _ 3   2   2 _ 7   x 3  4 f (t) 5 (t 2 1)(2t 1 3) 

 5 g (u) 5  u    
2
 _ 5    2 4u 3  6 f (x) 5 2 √

__
 x   2   3 ____ 2 √

__
 x    

 7 h(u) 5 3  sin  u 1 4  cos  u  8 f (t) 5 3t 2 2 2  sin  t 

 9 f (x) 5  √
__

 x   (2x 2 5) 10 g (u) 5 3  cos  u 2 2  sec2  u 

11 h(t) 5 e 3t 2 1 12 f (t) 5   2 __ t  

13 h(t) 5   t ______ 
3t2 1 5

   14 h(u) 5 esin u  cos  u 

15 f (x) 5 (3 1 2x)2

In questions 16–20, find f.

16 f 0(x) 5 4x 2 15x 2 17 f 0(x) 5 1 1 3x 2 2 4x 3; f 9(0) 5 2, f (1) 5 2

18 f 0(t) 5 8t 2 sin  t 19 f 9(x) 5 12x 3 2 8x 1 7, f (0) 5 3

20 f 9(u) 5 2  cos  u 2 sin(2u)

In questions 21–50, evaluate each integral.

21 ∫x(3x 2 1 7)5dx 22 ∫   x _________ 
(3x 2 1 5)4

   dx

23 ∫ 2x 2  
4
 √

_______

 5x 3 1 2   dx 24 ∫   (3 1 2  √
__

 x   )5
 _________   √

__
 x      dx

25 ∫t2  √
______

 2t3 2 7  dt 26 ∫  ( 2 1   3 __ x   )  
5

  (   1 __ x 2   ) dx

27 ∫sin(7x 2 3)dx 28 ∫  sin(2u 2 1) _____________  
cos(2u 2 1) 1 3

   du

29 ∫sec2(5u 2 2)du 30 ∫cos(px 1 3)dx

31 ∫sec 2t tan 2t dt 32 ∫xe  x 2  1 1dx

33 ∫  √
_
 t   e2t  √

_

 t   dt 34 ∫    2 __ 
u
   (ln u)2 du

35 ∫    dz _____ 
z ln 2z

   36 ∫t  √
______

 3 2 5t2   dt

37 ∫u2 sec2 u3du 38 ∫    sin   √
_
 t   _____ 

2  √
_
 t  
   dt

39 ∫tan5 2t sec2 2t dt 40 ∫    dx __________ 
  √

__
 x  (  √__

 x   1 2)
  

Exercise 16.1
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 16.2 Methods of integration: integration 
by parts

As far as this point, you will have noticed that while differentiation and 
integration are so strongly linked, finding derivatives is greatly different from 
finding integrals. With the derivative rules available, you are able to find 
the derivative of about any function you can think of. By contrast, you can 
compute anti-derivatives for a rather small number of functions. Thus far, we 
have developed a set of basic integration formulae, most of which followed 
directly from the related differentiation formulae that you saw in Table 16.2.

Using substitution, in some cases, helps us reduce the difficulty of evaluating 
some integrals by rendering them in familiar forms. However, there are far 
too many cases, where the simple substitution will not help. For example,

∫x cos x dx

cannot be evaluated by the methods you have learned so far. We improve 
the situation in this section by introducing a powerful and yet simple tool 
called integration by parts.

Recall the product rule for differentiation:

  d ___ 
dx

   (u(x)v (x)) 5 u9(x)v (x) 1 u(x)v9(x), 

which gives rise to the differential form

d(u(x)v (x)) 5 v (x)d(u(x)) 1 u(x)d(v (x)), and for convenience, 
we will write

d(uv) 5 vdu 1 udv.

If we integrate both sides of this equation, we get

∫d(uv) 5 ∫vdu 1 ∫udv ⇔ uv 5 ∫vdu 1 ∫udv.

Solving this equation for udv, we get

∫udv 5 uv 2 ∫vdu.

This rule is the integration by parts.

The significance of this rule is not immediately apparent. We will see its 
great utility in a few examples.

41 ∫sec5 2t tan 2t dt 42 ∫    x 1 3 ___________ x 2 1 6x 1 7
   dx

43 ∫    k3x 3
 __________ 

  √
________

 a2 2 a4x 4  
   dx 44 ∫3x  √

_____
 x 2 1   dx

45 ∫csc2 pt dt 46 ∫  √
________

 1 1 cos u   sin u du

47 ∫t2  √
_____

 1 2 t   dt	 48 ∫    r2 2 1 _______ 
  √

______
 2r 2 1  
   dr

49 ∫    e x 2  2 e2 x 2  ________ 
e x 2  1 e2 x 2 

    xdx 50 ∫    t2 1 2 ______ 
  √

_____
 t 2 5  
   dt
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Example 7�

Evaluate ∫x cos x dx.

Solution

First, observe that you cannot evaluate this as it stands, i.e. it is not one of 
our basic integrals and no substitution can help either.

Notice how you need to make a clever choice of u and dv so that the 
integral on the right side is one that will ease your work ahead. We need to 
choose u (to differentiate) and dv (to integrate); thus we let

u 5 x, and dv 5 cos x dx.

Then du 5 dx, and v 5 sin x. (We will introduce c at the end of the 
process.)

It is usually helpful to organize your work in a table form:

u 5 x du 5 dx

dv 5 cos x dx v 5 sin x

This gives us:

  x cos x dx 5 ∫u dv 5 uv 2 ∫vdu

{      {

 u        dv

5 x sin x 2 ∫sin x dx

5 x sin x 1 cos x 1 c

To verify your result, simply differentiate the right-hand side.

  d ___ 
dx

   (x sin x 1 cos x 1 c) 5 sin x 1 x cos x 2 sin x 1 0 5 x cos x

Note: What other choices can you make?

There are three other choices of u and dv in this problem:

1 If we let

u 5 cos x du 5 2sin x dx }  ⇒ ∫x cos x dx 5   x 2 __ 
2

   cos x 1 ∫   x 2
 __ 2   sin x dx

dv 5 dx v 5   x 2 __ 
2

  
This new integral is worse than the one we started with!

2 If we let

u 5 x cos x du 5 (cos x 2 x sin x)dx }  ⇒ ∫x cos x dx 5 x 2 cos x 2 ∫x(cos x 2 x sin x)dx
dv 5 x dx v 5 x

Again, this new integral is worse than the one we started with!

3 If we let

  u 5 1 du 5 0

  dv 5 x cos x dx v 5 ??

This is obviously a bad choice since we still do not know how to integrate dv 5 x cos x dx.

∫

Brook Taylor (1685–1731) 
is credited with devising 
integration by parts. Taylor 
is mostly known for his 
contributions to power series 
where his ‘Taylor theorem’ 
has several very important 
applications in mathematics 
and science.
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The objective of integration by parts is to move from an integral ∫udv 
(which we cannot see how to evaluate) to an integral ∫vdu which we can 
integrate. So, keep in mind that integration by parts does not necessarily 
work all the time, and that we have to develop enough experience with 
such a process in order to make the ‘correct’ choice for u and vdu. 

Example 8�

Evaluate ∫xe2xdx.

Solution

We let

u 5 x   du 5 dx }  ⇒ ∫xe2xdx 5 2xe2x 1 ∫e2xdx
dv 5 e2x dx  v 5 2e2x

5 2xe2x 2 e2x 1 c

Example 9�

Evaluate ∫ ln x dx.

Solution

u 5 ln x  du 5   dx ___ x   }  ⇒ ∫ ln x dx 5 x ln x 2 ∫x   dx ___ x   
dv 5 dx  v 5 x

5 x ln x 2 x 1 c

Example 10�

Evaluate ∫x 2 ln x dx.

Solution

Since x 2 is easier to integrate than ln x, and the derivative of ln x is also 
easier than ln x itself, we make the following substitution:

u 5 ln x   du 5   dx ___ x   }  ⇒ ∫x 2 ln x dx 5   x 3 __ 
3

   ln x 2 ∫   x 32
 ___ 3     dx ___ x   

dv 5 x 2 dx   v 5   x 3 __ 
3

  

5   x 3 __ 
3

   ln x 2 ∫  1 
_ 3  x 2dx

5   x 3 __ 
3

   ln x 2   1 _ 9  x 3 1 c

Example 11 – Repeated�use�of�integration�by�parts�

Evaluate ∫x 2 sin x dx.

Solution

Since sin x is equally easy to integrate or differentiate while x 2 is easier to 
differentiate, we make the following substitution:

u 5 x 2   du 5 2x dx }  ⇒ ∫x 2 sin x dx 5 2x 2 cos x 1 2∫x cos x dx
dv 5 sin x dx  v 5 2cos x
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This first step simplified the original integral. However, the right-hand side 
still needs further integration. Here again, we use integration by parts.

u 5 x 2   du 5 2x dx  }  ⇒ ∫2x cos x dx 5 2x sin x 2 2∫sin x dx
dv 5 cos x dx   v 5 sin x

5 2x sin x 1 2 cos x 1 c

Combining the two results, we can now write

∫x 2 sin x dx 5 2x 2 cos x 1 2∫x cos x dx

5 x 2 cos x 1 2x sin x 1 2 cos x 1 c.

Note: When making repeated applications of the integration by parts, you 
need to be careful not to change the ‘nature’ of the substitution in successive 
applications. For instance, in the previous example, the first substitution was  
u 5 x 2 and dv 5 sin x dx. If in the second step, you had switched the 
substitution to u 5 cos x and dv 5 2xdx, you would have obtained

∫x 2 sin x dx  5 2x 2 cos x 1 x 2 cos x 1 ∫x 2 sin x dx

  5 ∫x 2 sin x dx,

thus ‘undoing’ the previous integration and returning to the original integral.

Example 12�

Evaluate ∫x 2e xdx.

Solution

Since e x is equally easy to integrate or differentiate while x 2 is easier to 
differentiate, we make the following substitution:

u 5 x 2   du 5 2x dx }  ⇒ ∫x 2e xdx 5 x 2e x 2 2∫xe xdx
dv 5 e xdx  v 5 e x

This first step simplified the original integral. However, the right-hand side 
still needs further integration. Here again, we use integration by parts.

u 5 2x   du 5 2 dx }  ⇒ ∫2xe xdx 5 2xe x 2 2∫e xdx
dv 5 e xdx  v 5 e x

5 2xe x 2 2e x 1 c

Hence,

∫x 2e xdx 5 x 2e x 2 ∫2xe xdx

5 x 2e x 2 2xe x 1 2e x 1 c.
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Using integration by parts to find unknown 
integrals
Integrals like the one in the next example occur frequently in electricity 
problems. Their evaluation requires repeated applications of integration by 
parts followed by algebraic manipulation.

Example 13�

Evaluate∫cos x e x dx.

Solution

Let

u 5 e x   du 5 e x dx }  ⇒ ∫cos x e x dx 5 e x sin x 2 ∫sin x e  x dx
dv 5 cos x dx   v 5 sin x

The second integral is of the same nature, so we use integration by parts 
again.

u 5 e x   du 5 e x dx }  ⇒ ∫sin x e x dx 5 2e x cos x 1 ∫cos x e x dx
dv 5 sin x dx   v 5 2cos x

Hence,

∫cos x e x dx 5 e x sin x 2 ∫sin x e x dx

5 e x sin x 2 (2e x cos x 1 ∫cos x e x dx)

5 e x sin x 1 e x cos x 2 ∫cos x e x dx.

Now, the unknown integral appears on both sides of the equation, thus

∫cos x e x dx 1 ∫cos x e x dx 5 e x sin x 1 e x cos x

⇒ 2∫cos x e x dx 5 e x sin x 1 e x cos x

⇒ ∫cos x e x dx 5   e x sin x 1 e x cos x  ______________ 
2

   1 c.

Example 14�

Evaluate ∫x ln x dx.

Solution

u 5 ln x   du 5   dx ___ x   }  ⇒ ∫x 2 ln x dx 5   x 2 __ 
2

   ln x 2 ∫   x 2 __ 2     dx ___ x  
dv 5 x dx  v 5   x 2 __ 

2
  

5   x 2 __ 
2

   ln x 2 ∫   xdx ___ 2   5   x 2 __ 
2

   ln x 2   x 2 __ 4   1 c

Alternatively, we could have used a different substitution:

u 5 x ln x   du 5 (ln x 1 1)dx }  ⇒ ∫x ln x dx 5 x 2 ln x 2 ∫x(ln x 1 1)dx
dv 5 dx   v 5 x

5 x 2 ln x 2 ∫x ln x dx 2 ∫xdx
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Adding ∫x ln x dx to both sides and integrating ∫xdx we get

∫x ln x dx 1 ∫x ln x dx 5 x 2 ln x 2   x 2 __ 
2

   1 c

⇒ 2∫x ln x dx 5 x 2 ln x 2   x 2 __ 
2

   1 c

⇒ ∫x ln x dx 5   1 __ 
2

    ( x 2 ln x 2   x 2 __ 
2

   1 c )  5   x 2 ln x _____ 
2

   2   x 2 __ 4   1 C.

Note: The constant c is arbitrary, and hence it is unimportant that we use 
c/2 or C in our final answer.

In questions 1–22, evaluate each integral.

 1 ∫x 2e2x 3dx  2 ∫x 2e2xdx

 3 ∫x 2 cos 3x dx  4 ∫x 2 sin ax dx

 5 ∫cos x ln(sin x)dx  6 ∫x ln x 2 dx

 7 ∫x 2 ln x dx  8 ∫x 2(e x 2 1)dx

 9 ∫x cos px dx 10 ∫e 3t cos 2t dt

11 ∫arcsin x dx	 12 ∫x 3e xdx

13 ∫e22x sin 2x dx 14 ∫sin(ln x)dx

15 ∫cos(ln x)dx 16 ∫ln(x 1 x 2)dx

17 ∫e kx sin x dx 18 ∫x sec2 x dx

19 ∫sin x sin 2x dx 20 ∫x arctan x dx

21 ∫   ln x ____   √
__

 x     dx 22 ∫t sec2 t dt

23 In one scene of the movie Stand and Deliver, the teacher shows his students how 
to evaluate ∫x 2 sin x dx by setting up a chart similar to the following.

sin x
x 2 2cos x 1

2x 2sin x 2

2 cos x 1

Multiply across each row and add the result. The integral is

∫x 2 sin x dx 5 2x 2 cos x 1 2x sin x 1 2 cos x 1 c.

Explain why the method works for this problem.

In questions 24–26, use the result of question 23 to evaluate each integral.

24 ∫x 4 sin x dx

25 ∫x 5 cos x dx

26 ∫x 4e xdx

Exercise 16.2



787

 16.3 More methods of integration

In the previous section, we looked at a very powerful method for 
integration that has a wide range of applications. However, integration by 
parts does not work for all situations, and in some cases where it works, it 
may not be the most efficient of methods. We learned about substitution 
before. In this section we will consider a few trigonometric integrals and 
some substitutions related to trigonometric functions or their inverses.

This section is basically a set of examples that will show you how to deal 
with a variety of cases.

Some of the trigonometric identities you learned before will prove very 
helpful in this section. Key identities we will make use of are the following:

1 cos2 u 1 sin2 u 5 1

2 sin2 u 5   1 2 cos 2u _________ 
2

  

3 cos2 u 5   1 1 cos 2u _________ 
2

  

4 sec2 u 5 1 1 tan2 u

Example 15�

Evaluate ∫sin2 x dx.

Solution

We can use identity (2) from the list above.

∫sin2 x dx 5 ∫   1 2 cos 2x _________ 2   dx 5   1 __ 
2

  ∫(1 2 cos 2x)dx

5   1 __ 
2

    ( x 2   1 __ 
2

   sin 2x )  1 c

27 Show that the method used in question 23 will not work with

∫x 2 ln x dx.

28 Show that ∫x ne xdx 5 x ne x	2 n∫x n 21e xdx, then use this reduction formula	to

 show that ∫x 4e xdx 5 ax 4e x 1 b x 3e x 1 cx 2e x 1 dxe x 1 fe x 1 g, where a, b, c, …,

 g are to be determined.

29 Show that ∫x n ln x dx 5   x n 1 1
 _____ 

n 1 1
   ln x 2   x n 1 1

 _______ 
(n 1 1)2   1 c.

30 Show that ∫e mx cos nx dx 5   
e mx(m cos nx 1 n sin nx)

  ____________________  
m2 1 n 2   1 c.

31 Show that ∫e mx sin nx dx 5   
e mx(m sin nx 2 n cos nx)

  ____________________  
m2 1 n 2   1 c.
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Example 16�

Evaluate ∫cos4 udu.

Solution

Identity (3) will give us the following:

∫cos4 udu 5 ∫   (   1 1 cos 2u _________ 
2

   )  
2
 du 5   1 __ 4  ∫(1 1 2 cos 2u 1 cos2 2u)du

  5   1 __ 4  ∫  ( 1 1 2 cos 2u 1   1 1 cos 4u _________ 
2

   ) du

  5   1 __ 
8

   ( 2u 1 2 sin 2u 1 u 1   1 __ 4   sin 4u )  1 c

  5   1 ___ 
32

   (12u 1 8 sin 2u 1 sin 4u) 1 c

Here is a list of a few cases and how to find the integral. There are a few 
more integrals that we did not list here. On exams, any non-standard cases 
will be accompanied by a recommended substitution.

Integral How to find it

∫sinm x cosn x dx If m is odd, then break sinm x into sin x and sinm 2 1 x, use the 
substitution u 5 cos x and change the integral into the form 
∫cosp x sin x dx 5 ∫u pdu. Similarly if n is odd.

∫tanm x secn x dx If m and n are odd, break off a term for sec x tan x dx and 
express the integrand in terms of sec x 
since d(sec x) 5 sec x tan x dx.

∫tann x dx Write the integrand as ∫tann 22 x tan2 x dx, replace tan2 x with 
sec2 x 2 1 and then use u 5 tan x.

∫secn x dx If n is even, factor a sec2 x out and write the rest in terms of 
tan2 x 1 1. If n is odd, factor a sec3 x out. Here, integration by 
parts may be useful.

Example 17�

Evaluate ∫sec x dx.

Solution

This integral is evaluated using a ‘clever’ multiplication by an atypical 
factor, then:

∫sec x dx 5 ∫sec x   tan x 1 sec x ___________ tan x 1 sec x   dx 5 ∫   sec x tan x 1 sec2 x  _______________  
tan x 1 sec x

    dx

Now use the substitution u 5 sec x 1 tan x ⇒ du 5 (sec x tan x 1 sec2 x)
dx; hence,

∫sec x dx 5 ∫   sec x tan x 1 sec2 x  _______________  
tan x 1 sec x

    dx 5 ∫   du ___ u  

   5 ln|u | 1 c 5 ln|tan x 1 sec x | 1 c.
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Example 18�

Evaluate ∫sec3 x dx.

Solution

This can be evaluated using integration by parts and some of the results we 
have already established.

  u 5 sec x du 5 sec x tan x dx

  dv 5 sec2 xdx v 5 tan x

Hence,

∫sec3 x dx 5 sec x tan x 2 ∫tan x sec x tan x dx

5 sec x tan x 2 ∫sec x tan2 x dx

5 sec x tan x 2 ∫sec x[sec2 x 2 1]dx

5 sec x tan x 2 ∫sec3 x dx 1 ∫sec x dx.

Adding ∫sec3 x dx to both sides:

2∫sec3 x dx 5 sec x tan x 1 ∫sec x dx

5 sec x tan x 1 ln|sec x 1 tan x |

And finally,

∫sec3 x dx 5 
sec x tan x 1 ln|sec x 1 tan x |

2
 1 c.

Example 19 

Evaluate ∫sin3 x cos3 x dx.

Solution

This integral can be evaluated by separating either a cosine or a sine, then 
writing the rest of the expression in terms of sine or cosine.

We will separate a cosine here.

∫sin3 x cos3 x dx 5 ∫sin3 x cos2 x cos x dx

5 ∫sin3 x  (1 2 sin2 x)cos x dx

5 ∫(sin3 x 2 sin5 x)cos x dx

Now we let

u 5 sin x ⇒ du 5 cos x dx, and hence

∫sin3 x cos3 x dx 5 ∫(sin3 x 2  sin5 x)cos x dx

5 ∫(u3 2 u5)du 5   u 4 __ 4   2   u
6
 __ 

6
   1 c

5   sin4 x _____ 4   2   sin6 x _____ 
6

   1 c.
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Some useful trigonometric substitutions
Evaluating integrals that involve (a2 2 u 2), (a2 1 u 2) or (u 2 2 a2) may be 
rendered simpler by using some trigonometric substitution like the ones 
listed below.

Expression Substitution Simplified du

a2 2 u2 u 5 a sin u
a2 2 u2 5 a2 2 a2 sin2 u

5 a2(1 2 sin2 u) 5 a2 cos2 u
a cos u du

a2 1 u2 u 5 a tan u
a2 1 u2 5 a2 1 a2 tan2 u

5 a2(1 1 tan2 u) 5 a2 sec2 u
a sec2 u du

u2 2 a2 u 5 a sec u
u2 2 a2 5 a2 sec2 4u 2 a2

5 a2(sec2 u 2 1) 5 a2 tan2 u
a sec u tan u du

As you notice, this substitution is not the usual form. For convenience, 
we express the variable of integration in terms of the new variable. For 
example, rather than saying let u 5 arcsin   u __ a  , we say u 5 a sin u. This allows 
us to easily find an expression for du. We will clarify the use of this type of 
substitution with a few examples. One important aspect of the process is 
how to revert back to the variable of integration. We will demonstrate that 
in the following examples.

Example 20�

Evaluate ∫   dx ________ 
  √

______

 a2 2 x 2  
   .

Solution

This integrand is of the form involving a2 2 u2, where u 5 x. We use the 
substitution x 5 a sin u. 
⇒ dx 5 a cos udu,

  √
______

 a2 2 x 2   5   √
_______

 a2 cos2 u   5 a cos u
Hence,

∫   dx ________ 
  √

______

 a2 2 x 2  
   5 ∫   a cos udu ________ 

a cos u
    5 ∫du 5 u 1 c.

Now, consider the right triangle where  
x 5 a sin u ⇔ sin u 5   x __ a  .

∫   dx ________ 
  √

______

 a2 2 x 2  
   5 u 1 c 5 arcsin   x __ a   1 c.

Example 21�

Evaluate ∫   dt _______ 
  √

______

 a2 2 t 2  
   .

Solution

This integrand is of the form involving a2 2 u 2, where u 5 t. We use the 
substitution t 5 a sin u.

⇒ dt 5 a cos udu,

a2 2 t 2 5 a2 cos2 u

a x

θ
a2 � x2



791

And so

∫   dt ______ 
a2 2 t 2

   5 ∫   a cos udu ________ 
a2 cos2 u

   5   1 __ a  ∫ sec udu 5   1 __ a   ln|sec u 1 tan u| 1 c.

Now, in the triangle right,

  t 5 a sin u ⇔ sin u 5   t __ a  ,

cos u 5   
  √

______

 a2 2 t 2  
 _______ a   ; 

tan u 5   t _______ 
  √

______

 a2 2 t 2  
  ; sec u 5   a _______ 

  √
______

 a2 2 t 2  
  

Consequently,

∫   dt ______ 
a2 2 t 2

   5   1 __ a   ln|sec u 1 tan u | 1 c 5   1 __ a   ln |   a _______ 
  √

______

 a2 2 t 2  
   1   t _______ 

  √
______

 a2 2 t 2  
   | 1 c

  5   1 __ a   ln |   a + t _______ 
  √

______

 a2 2 t 2  
   | 1 c.

This is an acceptable answer. However, using the logarithmic properties 
you learned in Chapter 5, you can simplify further.

∫   dt ______ 
a2 2 t 2

   5   1 __ a   ln |   a 1 t _______ 
  √

______

 a2 2 t 2  
   | 1 c 5   1 __ a   ln   √

_______

   
(a1 t)2

 ______ 
a2 2 t 2

     1 c

  5   1 __ a   ln   √
____________

    
(a 1 t )2

 ____________  
(a 2 t)(a 1 t)

     1 c 5   1 __ a   ln   √
______

   
(a 1 t)

 ______ 
(a 2 t)

     1 c

  5   1 ___ 
2a

   ln |   (a 1 t)
 ______ 

(a 2 t)
   | 1 c

Example 22�

Evaluate ∫   dt ______ 
a2 1 t 2

   .

Solution

This integrand is of the form involving a2 1 u2, where u 5 t. 
We use the substitution t 5 a tan u.

⇒ dt 5 a sec2 udu,

a2 1 t 2 5 a2(1 1 tan2 u) 5 a2 sec2 u

And so

∫   dt ______ 
a2 1 t 2

   5 ∫   a sec2 udu ________ 
a2 sec2 u

    5   1 __ a   ∫ du 5   1 __ a   u 1 c.

Since t 5 a tan u, then tan u 5   t __ a   ⇒ u 5 arctan   t __ a   .

Consequently,

∫   dt ______ 
a2 1 t 2

   5   1 __ a   u 1 c 5   1 __ a   arctan   t __ a   1 c.

a t

θ

a2 � t2
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Example 23�

Evaluate ∫   √
______

 x 2 1 5   dx.

Solution

This integrand is of the form involving a2 1 u 2, where u 5 x. We use the 
substitution x 5 a tan u 5   √

__
 5   tan u.

  ⇒ dx 5   √
__

 5   sec2 udu,

 5 1 x 2 5 5(1 1 tan2 u) 5 5 sec2 udu

And so

∫  √
______

 x 2 1 5   dx 5 ∫  √
______

 5 sec2 u     √
__

 5   sec2 udu

5 ∫5 sec3 udu.

Now, earlier in Example 18, we have seen that

∫sec3 x dx 5   
sec x tan x 1 ln|sec x 1 tan x | 

   ________________________  
2

   1 c.

And therefore

∫  √
______

 x 2 1 5   dx 5 5∫sec3 udu 5 5 (   sec x tan x 1 ln|sec x 1 tan x | 
   ________________________  

2
   )  1 c.

Now, in the triangle right,

tan u 5   x ___ 
  √

__
 5  
  ,

sec u 5   
  √

______

 5 1 x 2  
 _______ 

  √
__

 5  
   5   √

______

   5 1 x 2 ______ 5    , and so

∫  √
______

 x 2 1 5   dx 5 5 (   sec u tan u 1 ln|sec u 1 tan u |   ________________________  
2

   )  1 c

  5 5 (     √
______

   5 1 x 2 ______ 5        x ___ 
  √

__
 5  
   + 1n|  √

______

   5 1 x 2 ______ 5     +   x ___ 
  √

__
 5  
  | 
   _____________________________  

2
    )  + c

  5   
  √

__
 5  
 ___ 

2
    (   √

______

 5 1 x 2    x )  1   1 __ 
2

   ln (     √
______

 5 1 x 2   1 x
 ___________ 

  √
__

 5  
   )  1 c

  5   
  √

__
 5  
 ___ 

2
    (   √

______

 5 1 x 2    x )  1   1 __ 
2

    ( ln (   √
______

 5 1 x 2   1 x )  2 ln  √
__

 5   )  1 c

  5   
  √

__
 5  
 ___ 

2
    ( x   √

______

 5 1 x 2   )  1   1 __ 
2

    ( ln (   √
______

 5 1 x 2   1 x )  )  1 C.

In the last step we set 2   1 __ 
2

   ln  √
__

 5   1 c 5 C.

x

θ
5

5 � x2
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Example 24�

Evaluate ∫  √
________

 25 2 4x 2   dx.

Solution

This integrand is of the form involving a2 2 u 2, where u 5 2x. We use the 
substitution 2x 5 5 sin u.

2dx 5 5 cos udu ⇒ dx 5   5 _ 2   cos udu

  √
________

 25 2 4x 2   5   √
____________

  25 2 25 sin2 u   5 5 cos u

And so

∫  √
________

 25 2 4x 2   dx 5 ∫5 cos u (   5 __ 
2

   cos udu )  5   25 ___ 
2

   ∫cos2 udu

5   25 ___ 
2

   ∫  (   1 1 cos 2u _________ 
2

   ) du 5   25 ___ 
2

    (   u __ 
2

   1   1 __ 4   sin 2u )  1 c

5   25 ___ 
8

   (2u 1 sin 2u) 1 c.

But, since 2x 5 5 sin u, then sin u 5   2x __ 5   ⇒ u 5 arcsin   2x __ 5  , and since 
sin 2u 5 2 sin u cos u, then

∫  √
________

 25 2 4x 2   dx 5   25 ___ 
8

   (2u 1 sin 2u) 1 c

5   25 ___ 
8

    ( 2 arcsin   2x __ 5   1 2 (   2x __ 5   )  (     √
________

 25 2 4x 2  
 _________ 5   )  )  1 c

5   25 ___ 4   arcsin   2x __ 5   1   x  √
________

 25 2 4x 2   __________ 
2

   1 c.

2x

θ

25 � 4x2

5

Exercise 16.3

In questions 1–44, evaluate each integral.

 1 ∫sin3 t cos2 t dt  2 ∫sin3 t cos3 t dt

 3 ∫sin3 3u cos 3u du  4 ∫    1 __ 
t2   sin5 (   1 __ 

t
   ) cos2 (   1 __ 

t
   ) dt

 5 ∫    sin3 x _____ 
cos2 x   dx  6 ∫tan5 3x sec2 3x dx

 7 ∫u tan3 u2 sec4 u2 du  8 ∫    1 __ 
  √

_
 t  
   tan3   √

_
 t   sec3   √

_
 t   dt

 9 ∫tan4(5t)dt 10 ∫    dt _______ 
1 1 sin t

   
 Hint: multiply the 

integrand by   1 2 sin t ________ 1 2 sin t   .
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11 ∫    du ________ 
1 1 cos u

   12 ∫    1 1 sin t _______ cos t    dt

13 ∫    sin x 2 5 cos x ____________  sin x 1 cos x   dx

14 ∫    sec u tan u _________ 
1 1 sec2 u

   du 15 ∫    arctan t _______ 
1 1 t2   dt

16 ∫    1 ____________  
(1 1 t2)arctan t

   dt 17 ∫    dx ___________ 
x  √

_________

 1 2 (ln x)2  
  

18 ∫ sin3 x dx 19 ∫    sin3 x ______ 
  √

_____
 cos x     dx

20 ∫    sin3  √
__

 x   ______   √
__

 x      dx 21 ∫cos t cos3(sin t)dt

22 ∫    cos u 1 sin 2u  ____________ 
sin u

    du 23 ∫t sec t tan t dt

24 ∫    cos x ________ 2 2 sin x   dx 25 ∫e22x tan(e22x) dx

26 ∫    sec(  √
_
 t  )
 ______ 

  √
_
 t  
   dt 27 ∫    dt _________ 

1 1 cos 2t
  

28 ∫    √_______

 1 2 9x 2   dx 29 ∫    dx ________ 
(x 2 1 4 )    

3
 _ 2   
  

30 ∫  √
_____

 4 1 t2   dt 31 ∫    3etdt ______ 
4 1 e 2t  

32 ∫    1 ________ 
  √

_______

 9 2 4x 2  
   dx 33 ∫    1 ________ 

  √
_______

 4 1 9x 2  
   dx

34 ∫    cos x __________ 
  √

________

 1 1 sin2 x  
   dx 35 ∫    x _______ 

  √
______

 4 2 x 2  
   dx

36 ∫    x _______ x 2 1 16
   dx 37 ∫      √

______

 4 2 x 2   _______ x 2   dx

38 ∫    dx ________ 
(9 2 x 2 )   

3
 _ 2   
   39 ∫x  √

______

 1 1 x 2   dx

40 ∫e2x  √
_______

 1 1 e 2x   dx 41 ∫e x  √
_______

 1 2 e 2x   dx

42 ∫    e xdx ________ 
  √

_______

 e 2x 1 9  
   43 ∫    ln x ____   √

__
 x     dx

44 ∫    x 3
 _______ 

(x 1 2)2
   dx 

45 The integral ∫    x ______ x 2 1 9
   dx can be evaluated either by trigonometric substitution or

 by direct substitution. Do it both ways and reconcile the results.

46 The integral ∫    x 2
 ______ x 2 1 9

   dx can be evaluated either by trigonometric substitution

 or by rewriting the numerator as (x 2 1 9) 2 9. Do it both ways and reconcile the 
results.

 Hint: find numbers a and b such that 
sin x 2 5 cos x 5 a(sin x 1 cos x) 1 b(cos	x	2 sin x).
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 16.4 Area and definite integral

The main goal of this section is to introduce you to the following major 
problem of calculus.

The area problem: Given a function f (x) that is continuous and non-
negative on an interval [a, b], find the area between the graph of f (x) and 
the interval [a, b] on the x-axis.

We divide the base interval [a, b] into n equal sub-intervals, and over 
each sub-interval construct a rectangle that extends from the x-axis to 
any point on the curve y 5 f (x) that is above the sub-interval. The 
particular point does not matter – it can be above the centre, above one 
endpoint, or any other point in the sub-interval. In Figure 16.1 it is above 
the centre.

For each n, the total area of the rectangles can be viewed as an approximation 
to the exact area in question. Moreover, it is evident intuitively that as n 
increases, these approximations will get better and better and will eventually 
approach the exact area as a limit. See Figure 16.2.

A traditional approach to this would be to study how the choice of where 
to erect the rectangular strip does not affect the approximation as the 
number of intervals increases. You can construct ‘inscribed’ rectangles, 
which, at the start, give you an underestimate of the area. On the other 
hand, you can construct ‘circumscribed’ rectangles that, at the start, 
overestimate the area. See Figure 16.3.

y � f(x)

f(xi)

xi

y

x0

x x

x x

xb

Area � ?

y � f(x)

a0

y

 Hint: This is only an expository 
treatment that explains to you how 
the definite integral is developed. 
You will not be required to 
reproduce this calculation yourself.

Figure 16.1

Figure 16.2

Figure 16.3
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As the number of intervals increases, the difference between the 
overestimates and the underestimates will approach 0.

Figure 16.4 above shows n inscribed and subscribed rectangles and 
Figure 16.5 shows us the difference between the overestimates and the 
underestimates.

Figure 16.5 demonstrates that as the number n increases, the difference 
between the estimates will approach 0. Since, in Figure 16.1, we set up 
our rectangles by choosing a point inside the interval, the areas of the 
rectangles will lie between the overestimates and the underestimates, 
and hence as the difference between the extremes approaches zero, the 
rectangles we constructed will give the area of the region required. 

If we consider the width of each interval to be Dx, the area of any rectangle 
is given as

Ai 5 f (x *i )Dx.

The total area of the rectangles so constructed is

An 5  ∑ 
t 5 0

  

n

    f (x *i )Dx 

where x *i is an arbitrary point within any sub-interval [xi  2  1, xi], x0 5 a and 
xn 5 b.

In the case of a function f (x) that has both positive and negative values on 
[a, b], it is necessary to consider the signs of the areas in the following sense.

On each sub-interval, we have a rectangle with width Dx and height f (x *). 
If f (x *) . 0, this rectangle is above the x-axis; if f (x *) , 0, this rectangle is 
below the x-axis. We will consider the sum defined above as the sum of the 
signed areas of these rectangles. That means the total area on the interval 
is the sum of the areas above the x-axis minus the sum of the areas of the 
rectangles below the x-axis.

x x

bxi*

f(xi*)

y � f(x)

a x

x

x�
�

��

Figure 16.5

Figure 16.7

Figure 16.4

Figure 16.6
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We are now ready to look at a ‘loose’ definition of the definite integral.

If f (x) is a continuous function defined for a < x < b, we divide the interval 
[a, b] into n sub-intervals of equal width Dx 5 (b 2 a)/n. We let x0 5 a and 
xn 5 b and we choose x *1, x *2, …, x *n in these sub-intervals, so that x *i lies in the 
ith sub-interval [xi  2  1, xi]. Then the definite integral of f (x) from a to b is

 ∫ 
a
  
b

 f  (x) dx 5   lim    
n → 

   ∑ 
i 5 1

  

n

    f (x *i  )Dx. 

In the notation  ∫ 
a
  
b

 f  (x) dx, in addition to the known integrand and 

differential, a and b are called the limits of integration: a is the lower limit 
and b is the upper limit.

Note: Because we have assumed that f (x) is continuous, it can be proved that 
the limit definition above always exists and gives the same value no matter 
how we choose the points x *i  . If we take these points at the centre, at two-
thirds the distance from the lower endpoint or at the upper endpoint, the 
value is the same. This is why we will state the definition of the integral from 
now on as

 ∫ 
a
  
b

 f  (x) dx 5   lim    
n → 

   ∑ 
i 5 1

  

n

    f (xi)Dx .

Calling the area under the function an integral is no coincidence. To make 
the point, let us take the following example.

Example 25(I) 

Find the area, A(x), between the graph of the function f (x) 5 3 and the 
interval [21, x], and find the derivative A9(x) of this area function.

Solution

The area in question is

A(x) 5 3(x 2 (21)) 5 3x 1 3, and

A9(x) 5 3 5 f (x).

xxx � 1

y

�2

�1

1

0

2

3

4

For a list of recommended 
resources about definite 
integrals, visit www.
pearsonhotlinks.com, enter the 
ISBN or title of this book and 
select weblink 2.
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Example 25(II) 

Find the area, A(x), between the graph of the function f (x) 5 3x 1 2 and 
the interval [22/3, x], and find the derivative A9(x) of this area function.

Solution

The area in question is

A(x) 5   1 _ 2    ( x 1   2 _ 3   )  (3x 1 2) 5   1 _ 6   (3x 1 2)2,  since this is the area of a 
triangle. 

Hence, A9(x) 5   1 _ 6   3 2(3x 1 2) 3 3 5 3x 1 2 5 f (x).

Example 25(III) 

Find the area, A(x), between the graph of the function f (x) 5 x 1 2 and 
the interval [21, x], and find the derivative A9(x) of this area function.

Solution

This is a trapezium, so the area is

A(x) 5   1 _ 2   (1 1 (x 1 2))(x 1 1) 5   1 _ 2   (x 2 1 4x 1 3), and

A9(x) 5   1 _ 2   3 (2x 1 4) 5 x 1 2 5 f (x).

The derivative of the area function A(x) is the function whose graph forms 
the upper boundary of the region. It can be shown that this relation is true, 
not only for linear functions but for all continuous functions. Thus, to find 
the area function A(x), we can look instead for a particular function whose 
derivative is f (x). This is, of course, the anti-derivative of f (x).

So, intuitively, as we have seen above, we define the area function as

A(x) =  ∫ 
a
  
 x

 f (t)dt , that is, A9(x) 5 f (x).

This is the trigger to the fundamental theorem of calculus which we will 
introduce in the following few pages. As we stressed at the outset, our 
intention here is to show you that this important theorem has its solid 
mathematical basis. However, examinations will not include questions 
requiring you to repeat the steps developed here. Just enjoy the discussion!

Before we begin the discussion, it is worth looking at some of the obvious 
properties of the definite integral.

xxx � (   )

3x � 2

2
3

xxx � 1
1

x � 2

Note that, in every case, 
A9(x) 5 f (x).
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Properties of the definite integral

1.  ∫ 
a
  
b

 f  (x) dx 5 2 ∫ 
b
  
a

 f  (x) dx

When we defined the definite integral  ∫ 
a
  
b

 f  (x) dx, we implicitly assumed 

that a , b. When we reverse a and b, then Dx changes from (b 2 a)/n 
to (a 2 b)/n. Therefore, the result above follows.

2.  ∫ 
a
  
a

 f  (x) dx 5 0

When a 5 b, then Dx 5 0 and so the result above follows.

The following are a few straightforward properties:

3.  ∫ 
a
  
b

 c   dx 5 c (b 2 a)

4.  ∫ 
a
  
b

   [ f (x) 6 g (x)] dx 5  ∫ 
a
  
b

   f (x)dx 6 ∫ 
a
  
b

   g (x)dx

5.  ∫ 
a
  
b

   c  f (x)dx 5 c ∫ 
a
  
b

   f (x)dx, where c is any constant

6.  ∫ 
a
  
b

   f (x)dx 5  ∫ 
a
  
c

   f (x)dx 1  ∫ 
c
  
b

   f (x)dx

Property 6 can be demonstrated with a diagram (Figure 16.8) where 
the area from a to b is the sum of the two areas, i.e. A(x) 5 A1 1 A2. 
Additionally, even if c . b the relationship holds because the area from 
c to b in this case will be negative.

xbc

A1 A2

a

xcb

A1

A2

a

x

A(x)

a x

Figure 16.8
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Average value of a function
As you recall from statistics, the average value of a variable is

 
__

 X  5   

 ∑ 
i 5 1

  

n

      Xi

 ______ n    .

We can also think of the average value of a function in the same manner. 
Consider a continuous function f (x) defined over a closed interval [a, b]. 
We partition this interval into n sub-intervals of equal length in a fashion 
similar to the previous discussion. Each interval has a length

x 5   b 2 a _____ n   .

Now, the average value of f (x) can be defined as

av ( f  ) 5   
f (x 1) 1 f (x 2) 1 … 1 f (xn)

   ______________________  n    .

Written in sigma notation:

av ( f  ) 5    

 ∑ 
k 5 1

  

n

      f (xk)

 ________ n    5   1 __ n    ∑ 
k 5 1

  

n

      f (xk)

However,

	 Dx 5   b 2 a _____ n    ⇒   1 __ n   5   x _____ 
b 2 a

  ; hence,

av ( f  ) 5   1 __ n    ∑ 
k 5 1

  

n

      f (xk) 5   x _____ 
b 2 a

    ∑ 
k 5 1

  

n

      f (xk) 5   1 _____ 
b 2 a 

    ∑ 
k 5 1

  

n

      f (xk)x

  {

A Riemann sum for f on [a, b]

This leads us to the following definition of the average value of a function 
f (x) over an interval [a, b].

The average (mean value) of an integrable function f (x) over an interval 
[a, b] is given by

av ( f  ) 5   1 _____ 
b 2 a

    ∫ 
 a
  
b

   f (x)dx.

f(xn)

y � f(x)

f(xk)

x
b

xnxkx1

a

f(x1)
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Max–min inequality

If max. f and min. f represent the maximum and minimum values of a 
non-negative continuous differentiable function f (x) over an interval [a, 
b], then the area under the curve lies between the area of the rectangle with 
base [a, b] and the min. f as height and the rectangle with max. f as height.

That is,

(b 2 a)min. f <  ∫ 
 a
  
b

 f (x)dx < (b 2 a)max. f. 

With the assumption that b . a, this in turn is equivalent to

min. f <   1 _____ 
b 2 a

    ∫ 
 a
  
b

 f (x)dx < max. f. 

Now using the intermediate value theorem we can ascertain that there is at

least one point c  [a, b] where f (c) 5   1 _____ 
b 2 a

    ∫ 
 a
  
b

 f (x)dx. 

The value f (c) in this theorem is in fact the average value of the function.

The first fundamental theorem of integral calculus

Our understanding of the definite integral as the area under the curve for 
f (x) helps us establish the basis for the fundamental theorem of integral 
calculus.

In the definition of definite integral, let us make the upper limit a variable, 
say x. Then we will call the area between a and x, A(x), i.e.

A(x) 5  ∫ 
 a
  
x

 f (t)dt .

y � f (x)

x

y

a

max. f

min. f

0 b

b

a
∫ f(x)dx

y � f (x)

f (c)

a

max. f

min. f

bc x

y

0
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Consequently,

A(x 1 h) 5  ∫ 
 a
  
x 1 h

 f (t)dt .

Now, if we want to find the derivative of A(x), we evaluate.

  lim    
h → 0

    
A(x 1 h) 2 A(x)

  ______________ 
h

    .

Using the properties of definite integrals discussed earlier, we have:

A(x 1 h) 2 A(x) 5  ∫ 
 a
  
x 1 h

 f  (t)dt  2  ∫ 
 a
  
x

 f (t)dt 

5  ∫ 
 x
  
a

 f (t)dt  1  ∫ 
a
  
x 1 h

 f  (t)d t

5  ∫ 
 x
  
x 1 h

 f  (t)dt 

Therefore,

  lim    
h → 0

    
A(x 1 h) 2 A(x)

  ______________ 
h

    5   lim    
h → 0

     
 ∫ 
 x
  
x 1 h

 f (t)dt 
 _________ 

h
    5   lim    

h → 0
     1 __ 
h

    ∫ 
 x
  
x 1 h

 f  (t)dt .

Looking at this result and what we established about the average value of 
f (x) over the interval [x, x 1 h] we can conclude that there is a point 
c  [x, x 1 h] such that

f (c) 5   1 __ 
h

    ∫ 
 x
  
x 1 h

 f  (t)dt .

What happens to c as h approaches 0?

Answer: as h approaches 0, x 1 h must approach x. This means, we are 
‘squeezing’ c between x and a number approaching x. So, c must also 
approach x. That is,

f (c) 5 f (x), and consequently

  lim    
h → 0

     
A(x 1 h) 2 A(x)

  ______________ 
h

    5   lim    
h → 0

     1 __ 
h

    ∫ 
 x
  
x 1 h

 f  (t)dt 5 f (c) 5 f (x) .

y � f (x)

f (c)

f (x)
f (x � h)

x x

y

O x � hc
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This last equation is stating that

  d ___ 
dx

   (A(x)) 5 A9(x) 5   d ___ 
dx

    (  ∫ 
 a
  
x

   f (t)dt )  5 f (x).

This very powerful statement is called the first fundamental theorem of 
integral calculus. In essence it says that the processes of integration and 
derivation are inverses of one another.

Note: It is important to remember that  ∫ 
  a

  
x

   f (t)dt is a function of x!

Example 26 

Find each of the following.

a)   d ___ 
dx

    ∫ 
 2e

  
x

     sec2 t dt b)   d ___ 
dx

    ∫ 
  0

  
x

      dt _____ 
1 1 t 4

  

c)   d ___ 
dx

    ∫ 
 x
  
p

      1 _____ 
1 1 t 4

   dt  d)   d ___ 
dx

    ∫ 
  0

  
2x 1 x 3

      1 _____ 
1 1 t 4

   dt

e)   d ___ 
dx

    ∫ 
 x
  
2x 1 x 3

      1 _____ 
1 1 t 4

   dt

Solution
a) This is a direct application of the fundamental theorem.

  d ___ 
dx

    ∫ 
 2e

  
x

     sec2 t dt 5 sec2 x

b) This is also straightforward.

  d ___ 
dx

    ∫ 
  0

  
x

      dt _____ 
1 1 t 4

   5   1 ______ 
1 1 x 4

  

c) In this exercise, we need to rewrite the expression before we perform 
the calculation.

  d ___ 
dx

    ∫ 
 x
  
p

     1 _____ 
1 1 t 4

   dt 5   d ___ 
dx

    ∫ 
 p

  
x

   2   1 _____ 
1 1 t 4

   dt 5 2   d ___ 
dx

    ∫ 
 x
  
p

     1 _____ 
1 1 t 4

   dt 5   21 ______ 
1 1 x 4

  

d) Remembering that this is a function of x, and that the upper limit

 is a function of x, which makes  ∫ 
  0

  
2x 1 x 3

      1 _____ 
1 1 t 4

   dt a composite of 

 ∫ 
  0

  
u

     1 _____ 
1 1 t 4

   dt and u 5 2x 1 x 3. So, we have to resort to the chain rule!

  d ___ 
dx

    ∫ 
  0

  
2x 1 x 3

     1 _____ 
1 1 t 4

   dt 5  (   d ___ 
du

    ∫ 
  0

  
u

     1 _____ 
1 1 t 4

   )  (   du ___ 
dx

   ) 

  5   1 ______ 
1 1 u4      

du ___ 
dx

  

  5   1 ____________  
1 1 (2x 1 x 3)4    (2 1 3x 2)

  5   2 1 3x 2 ____________  
1 1 (2x 1 x 3)4  
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e) Again, here we need to rewrite the integral before evaluation.

  d ___ 
dx 

    ∫ 
 x
  
2x 1x 3

     1 _____ 
1 1 t 4

   dt 5   d ___ 
dx

    (  ∫ 
 x
  
k

     1 _____ 
1 1 t 4

   dt 1  ∫ 
 k
  
2x 1x 3

     1 _____ 
1 1 t 4

   dt ) 

5   2 1 3x 2 ____________  
1 1 (2x 1 x 3)4   2   1 ______ 

1 1 x 4
  

The second fundamental theorem of integral calculus

Recall that A(x) 5  ∫ 
 a
  
x

   f (t)dt. If F (x) is any anti-derivatives of f (x), then 
applying what we learned in earlier sections:

F (x) 5 A(x) 1 c where c is an arbitrary constant.

Now,

F (b) 5 A(b) 1 c 5  ∫ 
 a
  
b

   f (t)dt 1 c, and

F (a) 5 A(a) 1 c 5  ∫ 
 a
  
a

 . f (t)dt 1 c 5 0 2 c, and hence

  F (b) 2 F (a) 5  ∫ 
 a
  
b

   f (t)dt 1 c 2 c

  5  ∫ 
 a
  
b

   f (t)dt.

Second fundamental theorem of calculus

 ∫ 
	a
  
b

   f (t)dt 5 F (b) 2 F (a)

The fundamental theorem is also referred to as the evaluation theorem. 
Also, since we know that F 9(x) is the rate of change in F (x) with respect to 
x and that F (b) 2 F (a) is the change in y when x changes from a to b, we 
can reformulate the theorem in words.

The integral of a rate of change is the total change.

 ∫ 
a
  
b

   F 9(x)dx 5 F (b) 2 F (a)

Here are a few instances where this applies:

1. If V 9(t) is the rate at which a liquid flows into or out of a container at 
time t, then

 ∫ 
t1

  
t2

   V 9(t)dt 5 V (t2) 2 V(t1) 

is the change in the amount of liquid in the container between time t1 
and t2.
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2. If the rate of growth of a population is n9(t), then

 ∫ 
t1

  
t2

   n 9(t)dt 5 n (t2) 2 n(t1)

is the increase (decrease!) in population during the time period from t1 
to t2.

3. Displacement situations are described separately later in the chapter.

This theorem has many other applications in calculus and several other 
fields. It is a very powerful tool to deal with problems of area, volume and 
work among other applications. In this book, we will apply it to finding 
areas between functions and volumes of revolution as well as displacement 
problems.

Notation:

We will use the following notation: 

  ∫ 
a
  
b

 f  (t) dt 5 F (x)]b
a 5 F (b) 2 F (a)

Example 27 

a) Evaluate the integral  ∫ 
21

  
3

    x 5  dx.

b) Evaluate the integral  ∫ 
0
  
4

     √
__

 x    dx.

c) Evaluate the integral  ∫ 
p
  
2p

   cos  u du.

d) Evaluate the integral  ∫ 
1
  
2

     4 1 u 2 ______ 
u 3

   du.

Solution

a)  ∫ 
21

  
3

    x 5  dx 5   x 6 __ 
6

  ]3

21
 5   3

6
 __ 

6
   2   1 __ 

6
   5   364 ___ 

3
  

b)  ∫ 
0
  
4

    √
__

 x    dx 5   2 __ 
3

    x    
3
 _ 2   ]4

0
 5   2 __ 

3
    4    

3
 _ 2    2 0 5   16 ___ 

3
  

c)  ∫ 
p
  
2p

   cos  u du 5 sin  u]
p

2p

 5 0 2 0 5 0

d)  ∫ 
1
  
2

     4 1 u 2 ______ 
u 3

   du 5  ∫ 
1
  
2

    (   4 __ 
u 3

   1   1 __ u   )  du 5  [ 4   u
22

 ___ 
22

   1 ln|u| ] 2
1
 

  5 [22u22 1 ln  u]2

1

  5 (22222 1 ln  2) 2 (221 1 ln  1) 5 2   1 __ 
2

   1 ln  2 1 2

  5   3 __ 
2

   1 ln  2
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Using substitution with definite integral
In Section 16.1 we discussed the use of substitution to evaluate integrals in 
cases that are not easily recognized. We established the following rule:

∫f (u(x))  u9(x)dx 5 ∫f (u)du 5 F (u(x)) 1 c 5 F (x) 1 c

When evaluating definite integrals by substitution, two methods are available.

1 Evaluate the indefinite integral first, revert to the original variable, and 
then use the fundamental theorem. For example, to evaluate

 ∫ 
 0
  
  p __ 
3

  

   tan5 x sec2 x dx,

we find the indefinite integral

∫tan5 x sec2 x dx 5 ∫u5du 5   1 _ 6   u6 5   1 _ 6   tan6 x,

and then we use the fundamental theorem, i.e.

 ∫ 
  0

  
  p __ 
3

  

   tan5 x sec2 x dx 5   1 _ 6   tan6 x 4 
  p 
__ 3  

 
0
 5   1 _ 6   (  √

__
 3  )6 5   27

 __ 6   5   9 _ 2   .

2 Use the following ‘substitution rule’ for definite integrals:

 ∫ 
 a
  
b

   f (u(x))u9(x)dx 5  ∫ 
 u(a)

  
u(b)

   f (u)du

Proof:
If F (x) is an anti-derivative of f (x), then by the fundamental theorem

 ∫ 
 b
  
a

   f (u(x))u9(x)dx 5 F (u(x))4
b

a
 5 F (u(b)) 2 F (u(a)).

Also,

 ∫ 
 u(a)

  
u(b)

   f (u)du 5 F (u) 4
u(b)

 
u(a) 5 F (u(b)) 2 F (u(a)).

Therefore, to evaluate

 ∫ 
  0

  
  p __ 
3

  

    tan5 x sec2 x dx,

letting u 5 tan x ⇒ u (   p __ 
3

   )  5   √
__

 3  , u(0) 5 0, and so

 ∫ 
  0

  
  p __ 
3

  

    tan5 x sec2 x dx 5  ∫ 
  0

  
  √

__
 3  

   u5du 5   1 _ 6   u 6 4  
√

_
 3   

0
 5   9 __ 

2
   .

Example 28 

Evaluate  ∫ 
  2

  
6

     √
______

 4x 1 1   dx.

Solution

Let u 5 4x 1 1, then du 5 4dx. The limits of integration are

u(2) 5 9 and u(6) 5 25, therefore

 ∫ 
  2

  
6

     √
______

 4x 1 1   dx 5   1 __ 4    ∫ 
  9

  
25

     √
__

 u   du 5   1 __ 4     (   2 __ 
3

    u   
3
 _ 2    ) 4

9

25

  5   1 __ 
6

   (125 2 27) 5   49 ___ 
3

   .
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Observe that using this method, we do not return to the original variable 
of integration. We simply evaluate the ‘new’ integral between the 
appropriate values of u.

In questions 1–42, evaluate the integral.

 1  ∫ 
22

  
1

    (3x 2 2 4x 3) dx  2  ∫ 
2
  
7  

  8  dx 

 3  ∫ 
1
  
5  

    2 __ 
t 3    dt   4  ∫ 

2
  
2

   (cos  t 2 tan  t)  dt

 5  ∫ 
1
  
7  

     2x 2 2 3x 1 5  ____________   √
__

 x      dx  6  ∫ 
0
  
p  

  cos   u  du

 7  ∫ 
0
  
p  

  sin   u  du  8  ∫ 
3
  
1  

   (5x 4 1 3x 2)  dx

 9  ∫ 
1
  
3

     u
5 1 2 ______ 

u2    du 10  ∫ 
1
  
e  

     2  dx ____ x    

11  ∫ 
1
  
3  

     2x ______ x 2 1 2
    dx  12  ∫ 

1
  
3

   (2 2   √
__

 x   )2  dx 

13  ∫ 
0
  
  p __ 4  

    3  sec2  u  du 14  ∫ 
0
  
1  

   (8x 7 1   √
__

 p   )  dx

15 a)  ∫ 
0
  
2  

   |3x|dx b)  ∫ 
22

  
0

     |3x|dx c)  ∫ 
22

  
2

     |3x|dx

16  ∫ 
  0

  
  p __ 2  

    sin 2x dx 17  ∫ 
 1
  
9

      1 ___   √
__

 x     dx

18  ∫ 
 22

  
2

     (e x 2e2x)dx 19  ∫ 
 21 

  
1

      dx ______ 
1 1 x 2  

20  ∫ 
  0

  
  1 __ 2  
      dx _______ 
  √

______

 1 2 x 2  
   21  ∫ 

 21
  

1

       dx _______ 
  √

______

 4 2 x 2  
  

22  ∫ 
 22

  
0

       dx ______ 
4 1 x 2   23  ∫ 

  0
  
4

      x 3 dx _______ 
  √

______

 x 2 + 1  
  

24  ∫ 
 1
  
  √

__
 e  

      
sin(p ln x)

 ________ x    dx 25  ∫ 
  e
  
e 2

     dt ____ 
t ln t

  

26  ∫ 
 21

  
2

     3x  √
______

 9 2 x 2   dx 27  ∫ 
  2   p __ 3  

  
  2p ___ 3  

      sin x __________ 
  √

________
 3 1 cos x  
   dx

Exercise 16.4
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28  ∫ 
  e
  
e 2

      ln x ____ x    dx 29  ∫ 
 1
  
  √

__
 3  

        
√

_______
 arctan x   ________ 

1 1 x 2   dx

30  ∫ 
 1
  
  √

__
 e  

      dx ___________ 
x  √

________

 12 (ln x)2  
   31  ∫ 

 2ln 2
  

ln 2

       e 2x
 ______ 

e 2x 1 9
   dx

32  ∫ 
  ln 2

  
ln (   2 __ 

  √
__

 3  
   ) 
      e22xdx _________ 
  √

_______

 1 2 e24x  
   33  ∫ 

  0
  
  p __ 4  

      √
_____

 tan x   sec2 x dx

34  ∫ 
  0

  
  √

__
 p  

    7x cos x 2 dx	 35  ∫ 
 p 2

  
4p2

      sin  √
__

 x   _____   √
__

 x      dx

36  ∫ 
  0

  
1

        √
__

 3  x ________ 
  √

_______

 4 2 3x 4  
   dx 37  ∫ 

  0
  
  2 ___ 
  √

__
 3  
  
      dx _______ 
9 1 4x 2  

38  ∫ 
  1

  
  √

__
 2  

      x dx ______ 
3 1x 4   39  ∫ 

  0
  
  p __ 6  

    (1 2 sin 3t)cos 3t dt

40  ∫ 
  0

  
  p __ 4  

    esin2u cos 2u du 41  ∫ 
  0

  
  p __ 8  

   (3 1 etan2t)sec2 2t dt

42  ∫ 
  0

  
  √

____

 ln p  

   4tet2 sin(et2)dt

In questions 43–47, find the average value of the given function over the given 
interval.

43 x 4, [1, 2] 44 cos x,  [ 0,   p __ 2   ] 
45 sec2 x,  [   p __ 6  ,   p __ 4   ]  46 e22x, [0, 4]

47   e 3x
 ______ 

1 1 e6x  ,  [   2ln 3 _____ 
6

  , 0 ] 
In questions 48–55, find the indicated derivative.

48   d ___ 
dx    ∫ 

  2
  
x

      sin t ____ t    dt 49   d __ 
dt

    ∫ 
 t
  
3

      sin x ____ x    dx

50   d ___ 
dx    ∫ 

 x 2
  

0

     sin t ____ t    dt 51   d ___ 
dx    ∫ 

  0
  
x 2

     sin u ____ u    du

52   d __ 
dt

   ∫ 
 2p

  
t

        
cos y

 ______ 
1 1 y2   dy 53   d ___ 

dx    ∫ 
 ax

  
 b x

      dt _____ 
5 1 t 4

  

54   d ___ 
du

    ∫ 
 sinu

  
cosu

     1 ______ 
1 2 x 2   dx 55   d ___ 

dx    ∫ 
 5
  
 x    

1 __ 4  
 
    e t 4 1 3t2

  dt 

56 Does the function F (x) 5  ∫ 
  0

  
2x 2x 2

   cos (   1 _____ 
1 1 t2   ) dt have an extreme value?

57 a) Find  ∫ 
 o
  
k

      dx ______ 3x 1 2  , giving your answer in terms of k.

b) Given that  ∫ 
 o
  
k  

     dx ______ 3x 1 2   5 1, calculate the value of k.

58 Given that p, q  , show that

 ∫ 
  0

  
1

   x p(1 2 x)qdx 5  ∫ 
  0

  
1

   xq(1 2 x)p dx.
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 16.5   Integration by method of partial 
fractions (Optional)

In this section, we will see how rational functions with polynomial 
denominators can be integrated. For example, if we were to find the 

indefinite integral ∫  x 1 1 __________
x 2 1 5x 1 6

 dx,
 
we first decompose the integrand 

into partial fractions and then the integration process would be 
straightforward.

 x 1 1 __________
x 2 1 5x 1 6

    a _____
x 1 2  1  b _____

x 1 3 

(See Section 3.6 for details.)

After solving for a and b we can perform the integration:

∫  x 1 1 __________
x 2 1 5x 1 6

   ∫(  21 _____
x 1 2

  1  2 _____
x 1 3 )dx 5 2ln | x 1 2 | 1 2ln | x 1 3 | 1 c 

 5 ln | (x 1 3)2

 _______
x 1 2 | 1 c

Example 29�

Find the indefinite integral ∫ 3x 2 1 __________
x 2 1 4x 1 4

 dx.

Solution

Using partial fractions will make the work simpler than otherwise.

From Example 42 of Section 3.6 we know:

 3x 2 1 __________
x 2 1 4x 1 4

  5  3 _____x 1 2  2  7 _______
(x 1 2)2

 Hence, the integral can be rewritten as:

∫ 3x 2 1 __________
x 2 1 4x 1 4

 dx 5 ∫ 3 _____
x 1 2

 dx 2 ∫ 7 _______
(x 1 2)2 dx

Do not attempt to evaluate the integrals.

59 Given that k  , evaluate the integral.

a) ∫x(1 2 x)k dx	 b)  ∫ 
  0

  
1

   x(1 2 x)kdx

60 Let F (x) 5  ∫ 
  3

  
x

     √
_______

 5t 2 1 2   dt. Find

a) F (3) b) F9(3) c) F  0(3)

61 Show that the function

f (x) 5  ∫ 
  x

  
3x

      dt __ t   

is constant over the set of positive real numbers.
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These two integrals can be found by inspection, giving:

∫ 3x 2 1 __________
x 2 1 4x 1 4

 dx 5 3 ln | x 1 2 | 1  7 _____
x 1 2  1 c

Example 30�

Find the indefinite integral ∫ 2 ___________
x 3 1 2x 2 1 2x

 dx. 

Solution

Again, from Example 43 of Section 3.6, we have:

 2 ___________
x 3 1 2x 2 1 2x

  5 1 _
x
  2  x 1 2 __________

x 2 1 2x 1 2
 

Hence, we can write the integral as:

∫ 2 ___________
x 3 1 2x 2 1 2x

 dx 5 ∫dx __
x
  2  x 1 2 __________

x 2 1 2x 1 2
 dx 5 ∫dx __

x
  2∫ x 1 1 1 1 __________

x 2 1 2x 1 2
 dx

  5 ∫dx __
x
  2 1 _

2  ∫ 2x 1 4 __________
x 2 1 2x 1 2

 dx  5 ∫dx __
x
  2 1 _

2 ∫ 2x + 4 __________
(x 1 1)2 1 1

 dx

 5 ln | x | 21 _
4

  ln(x 2 1 2x 1 2) 2 arctan (x 1 1) 1 c

Example 31�

Find the indefinite integral ∫ 5x 2 1 16x 1 17  _______________
2x 3 1 9x 2 1 7x 2 6

 dx.

Solution

Again from Example 41 of Section 3.6 we have:

∫ 5x 2 1 16x 1 17  _______________
2x 3 1 9x 2 1 7x 2 6

 dx 5 ∫ 3 ______
2x 2 1

 dx 2 ∫ 1 _____
x 1 2

 dx 1 ∫ 2 _____
x 1 3

 dx

 5 3 _
2  ln| 2x 2 1 | 2 ln| x 1 2 | 1 2 ln| x 1 3 | 1 c

Example 32�

Evaluate ∫ 3x 2 1 ______
x 3 1 8

 dx.

Solution

We first factorize the denominator:

x 3 1 8 5 (x 1 2)(x 2 2 2x 1 4)

Now, by using partial fractions we have:

3x 2 1 ______
x 3 1 8

  5  a _____
x 1 2  1  bx 1 c __________

x 2 2 2x 1 4
 

Solving for a, b, and c will yield:

3x 2 1  a(x 2 2 2x 1 4) 1 (bx 1 c)(x 1 2) 
5 (a 1 b)x 2 1 (2b 2 2a 1 c)x 1 4a 1 2c
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This implies: {  a 1 b 5 20  
2b 2 2a 1 c 5 23


4a 1 2c 5 21

 Solving this system of equations will yield:

a 5 27 ___
12 , b 5 7 __

12 , c 5 2 _
3 

Therefore,

∫ 3x 2 1 ______
x 3 1 8

 dx 5 ∫
27 __

12
 
_____

x 1 2
 dx 1 ∫

7 __
12

 x 1 2 _3 
__________

x 2 2 2x 1 4
 dx

Finally, using what you learned so far you can verify the answer to be:

∫ 3x 2 1 ______
x 3 1 8

 dx 5 27 __
12

  ln| x12 | 1 7 __
24  ln (x 2 2 2x 1 4) 2 5

√
__
3 ____

12  arctan ( x 2 1 _____
√
__
3 
 ) 1 c

Summary of procedures

In this book we will only consider five general cases. They are outlined below.

Possible cases for partial fractions

1 Denominator is a quadratic that factorises into two distinct linear factors, and 
numerator p(x) is a constant or linear.

   
p(x)
 _____________  

(ax 1 b)(cx 1 d)
   5   A ______ 

ax 1 b
   1   B ______ 

cx 1 d
  

2 Denominator is a quadratic that factorises into two repeated linear factors, and 
numerator p(x) is a constant or linear.

   
p(x)

 ________ 
(ax 1 b)2   5   A ______ 

ax 1 b
   1   B ________ 

(ax 1 b)2  

3 Denominator is a cubic that factorises into three repeated linear factors, and 
numerator p(x) is a constant, linear or quadratic.

   
p(x)

 ________ 
(ax 1 b)3   5   A ______ 

ax 1 b
   1   B ________ 

(ax 1 b)2   1   C ________ 
(ax 1 b)3  

4 Denominator is a cubic that factorises into one linear factor and one quadratic 
factor (that cannot be factorised), and numerator p(x) is a constant, linear or 
quadratic.

   
p(x)

  __________________  
(ax 1 b)(cx 2 1 dx 1 e)

   5   A ______ 
ax 1 b

   1   Bx 1 C ___________ 
cx 2 1 dx 1 e

  

5 Denominator is a cubic that factorises into three distinct linear factors, and 
numerator p(x) is a constant, linear or quadratic.

   
p(x)

  ___________________  
(ax 1 b)(cx 1 d)(ex 1 f)

   5   A ______ 
ax 1 b

   1   B ______ 
cx 1 d

   1   C _____ 
ex 1 f

  

A consequence of the 
Fundamental Theorem of 
Algebra (see margin note 
in Section 3.3) guarantees 
that any polynomial with 
real coefficients can only 
have factors that are linear 
or quadratic.
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 16.6 Areas

We have seen how the area between a curve, defined by y 5 f (x), and the 

x-axis can be computed by the integral  ∫ 
a
  
b 

 f (x)dx  on an interval [a, b], 

where f (x) > 0. In this section, we shall find that integration can be used to 
find the area of more general regions between curves.

Areas between curves of functions of the form 
y 5 f ( x) and the x-axis
If the function y 5 f (x) is always above the x-axis, finding the area is a 

straightforward computation of the integral  ∫ 
a
  
b 

 f (x)dx . 

Example 33 

Find the area under the curve f (x) 5 x 3 2 x 1 1 and the x-axis over the 
interval [21, 2].

x

y

�1

1

0

2

3

4

5

6

7

8

�2 �1 1 2 3

Evaluate each integral.

1 ∫  5x 1 1 __________ x 2 1 x 2 2
  dx  2 ∫  

x 1 4
 ______ x 2 2 2
  dx  3 ∫  

x 1 2
 ___________ x 2 1 4x 1 3

  dx

4 ∫  5x 2 1 20x 1 6  _____________  x 3 1 2x 2 1 x  dx  5 ∫  2x 2 1 x 2 12  _____________  x 3 1 5x 2 1 6x  dx 6 ∫  4x 2 1 2x 2 1  ____________ x 3 1 x 2
   dx

7 ∫  3 __________ x 2 1 x 2 2
  dx  8 ∫  5 2 x ___________ 

2x 2 1 x 2 1
  dx  9 ∫  3x 1 4 _______ 

(x 1 2) 2
  dx

10 ∫  12 ____________  x 4 2 x 3 2 2x 2
  dx  11 ∫  2 ______ x 3 1 x  dx  12 ∫  

x 1 2
 _______ x 3 1 3x  dx

13 ∫  3x 1 2 _______ x 3 1 6x  dx  14 ∫  2x 1 3 _______ x 3 1 8x  dx  15 ∫  
x 1 5
 _____________  x 3 2 4x 2 2 5x  dx

Exercise 16.5
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Solution
This area is simply

 ∫ 
21

  
2

    (x 3 2 x 1 1)  dx 5  [   x 4 __ 4   2   x 2 __ 
2

   1 x ] 2
21

 

5 (4 2 2 1 2) 2  (   1 __ 4   2   1 __ 
2

   2 1 )  5 5   1 __ 4   .

Using your GDC, this is done by simply choosing the ‘MATH’ menu, then 
the ‘fnInt’ menu item.

Or, you can type in your function and then go to the ‘CALC’ menu, where you 
choose ‘∫f (x)  dx’ and type in your integration limits. Here is what you see.

In some cases, you will have to adjust how you work. This is the case when 
the graph intersects the x-axis. Since you are interested in the area bounded 
by the curve and the interval [a, b] on the x-axis, you do not want the 
‘signed’ areas to cancel each other. This is why you have to split the process 
into different sub-intervals where you take the absolute values of the areas 
found and add them.

Example 34 
Find the area under the curve f (x) 5 x 3 2 x 2 1 and the x-axis over the 
interval [21, 2].

Solution
As you see from the diagram, a part of the graph is below the x-axis, and 
its area will be negative. If you try to integrate this function without paying 
attention to the intersection with the x-axis, this is what you get:

 ∫ 
21

  
 2

    (x 3 2 x 2 1)  dx 5  [   x 4 __ 4   2   x 2 __ 
2

   2 x ] 2
21

 

5 (4 2 2 2 2) 2  (   1 __ 4   2   1 __ 
2

   1 1 )  5 2   3 __ 4  

x

y

�1

�2

�3

1

0

2

3

4

5

6

�2 �1 1 2 3

fnInt(Xˆ3-X+1,X,
-1,2)

5.25

CALCULATE
1:value

Y1=Xˆ3-X+1

f(x)dx=5.25
Upper Limit?
X=2

2:zero
3:minimum
4:maximum

6:dy/dx
7: f(x)dx

5:intersect
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This integration has to be split before we start. However, this is a function 
where you cannot find the intersection point. So, we either use our GDC to 
find the intersection, or we just take the absolute values of the different parts 
of the region. This is done by integrating the absolute value of the function:

Area 5  ∫ 
a
  
b

  |  f (x)|dx

Hence, area 5  ∫ 
21

  
 2

    |(x 3 2 x 2 1)|dx.

As we said earlier, this is not easy to find given the difficulty with the 
x-intercept. It is best if we make use of a GDC.

Or, using ‘fnInt’ directly:

The difference between them is that the latter is more of a rough 
approximation than the first.

Example 35 

Find the area enclosed by the graph of the function f (x) 5 x 3 2 4x 2 1 x 1 6 
and the x-axis.

f(x)dx=3.6232289

Plot1

Y1= abs(Xˆ3-X-1)
Plot2 Plot3

Y2=
Y3=
Y4=
Y5=
Y6=

fnInt(Y1,X,-1,2)
3.614515798

x

y

�2

0

2

4

6

8

�2�3 �1 1 2 3 4
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Solution
This function intersects the x-axis at three points where x 5 21, 2 and 3. 
To find the area, we split it into two and then add the absolute values:

Area 5  ∫ 
21

  
3

    | f (x)|dx 5  ∫ 
21

  
2

    f (x)dx 1  ∫ 
2
  
3

   (2f (x)) dx

5  ∫ 
21

  
2

    (x 3 2 4x 2 1 x 1 6) dx 1  ∫ 
2
  
3

   (2x 3 1 4x 2 2 x 2 6) dx

5  [   x 4 __ 4   2   4x 3 ___ 
3

   1   x 2 __ 
2

   1 6x ] 2
21

 1  [ 2   x 4 __ 4   1   4x 3 ___ 
3

   2   x 2 __ 
2

   2 6x ] 3
2

5   45 ___ 4   1   7 ___ 
12

   5   71 ___ 
6

  

Area between curves
In some practical problems, you may have to compute the area between 
two curves. Suppose f (x) and g (x) are functions such that f (x) > g (x) on 
the interval [a, b], as shown in the diagram. Note that we do not insist that 
both functions are non-negative, but we begin by showing that case for 
demonstration purposes.

To find the area of the region R between the curves from x 5 a to x 5 b, we 
subtract the area between the lower curve g (x) and the x-axis from the area 
between the upper curve f (x) and the x-axis; that is,

Area of R 5  ∫ 
a
  
b

 f (x) dx  2  ∫ 
a
  
b

 g (x) dx  5  ∫ 
a
  
b

 [ f (x) 2 g (x)] dx .

xba

y
y � f(x)

y � g(x)

0

R

xba

y
y � f(x)

0

xba

y

y � g(x)

0
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The fact just mentioned applies to all functions, not only positive 
functions. These facts are used to define the area between curves.

If f (x) and g (x) are functions 
such that f (x) > g (x) on the 
interval [a, b], then the area 
between the two curves is 
given by

 A 5  ∫ 
a
  
b 

   [ f (x) 2 g (x)] dx.

Example 36 

Find the area of the region between the curves y 5 x 3 and y 5 x 2 2 x on 
the interval [0, 1]. (See diagram above.)

Solution

y 5 x 3 appears to be higher than y 5 x 2 2 x with one intersection at x 5 0. 
Thus, the required area is

A 5  ∫ 
0
  
1

   [x 3 2 (x 2 2 x)] dx 5  [   x 4
 __ 4   2   x 3 __ 

3
   1   x 2 __ 

2
   ] 1

0
 5   5 ___ 

12
   .

In order to take all cases into consideration, we will present here another 
case where you must be very careful of how you calculate the area. This is 
the case where the two functions in question intersect at more than one 
point. We will clarify this with an example.

Example 37 

Find the area of the region bounded by the curves y 5 x 3 1 2x 2 and 
y  5  x 2  1  2x.

Solution

The two curves intersect when 

x 3 1 2x 2 5 x 2 1 2x ⇒ x 3 1 x 2 2 2x 5 0 ⇒ x (x 1 2)(x 2 1) 5 0, 
i.e. when x 5 22, 0 or 1.

x

y

�1

1

0

2

3

4

�1 1 2

x

y

�1

�2

�3

1

0

2

3

4

�1�2�3 1 2
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The area is equal to

A 5  ∫ 
22

  
0

   [ x 3 1 2x 2 2 (x 2 1 2x)] dx 1  ∫ 
0
  
1

   [x 2 1 2x 2 (x 3 1 2x 2)] dx

5  ∫ 
22

  
0

   [ x 3 1 x 2 2 2x] dx 1  ∫ 
0
  
1

   [2x 2 1 2x 2 x 3] dx

5  [   x 4 __ 4   1   x 3 __ 
3

   2 x 2 ] 0
22

 1  [ 2   x 4 __ 4   2   x 3 __ 
3

   1 x 2 ] 1
0

5 0 2 [    16 ___ 4   2   8 __ 
3

   2 4 ]  1  [ 2   1 __ 4   2   1 __ 
3

   1 1 ]  2 0 5   37 ___ 
12

   .

This discussion leads us to stating the general expression you should use in 
evaluating areas between curves.

If f (x) and g	(x) are continuous functions on the interval [a, b], the area between the two 
curves is given by

A 5  ∫ 
a
  
b

   |f (x) 2 g (x)|dx.

The above computation can be done with your GDC as follows:

Areas along the y-axis
If we were to find the area enclosed by y 5 1 2 x and y2 5 x 1 1, it would 
be best to treat the region between them by regarding x as a function of y 
as you see in the graph here.

Plot1

Y1= Xˆ3+2X2
Plot2 Plot3

Y2= X2+2X
Y3= abs(Y1-Y2)
Y4=
Y5=
Y6=
Y7=

Y3=abs(Y1-Y2)

Upper Limit?
X=-2 Y=0 f(x)dx=3.083523

x

x � 1 � y

x � y2 � 1

O

y

�2

�3

�1

1

2

3

�2 �1 1 2 3 4

∆y}
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The area of the shaded region can be calculated using the  
following integral:

A(y) 5  ∫ 
 21

  
1

    |(1 2 y) 2 (y 2 2 1)|dy

5  ∫ 
22

  
1

     |2 2 y 2 y 2|dy 5 |2y 2   
y 2

 __ 
2

   2   
y 3

 __ 
3

   |1
22

 5   9 __ 
2

  

If we were to use y as a function of x, then the calculation would have 
involved calculating the area by dividing the interval into two: [21, 0] 
 and [0, 3].

In the first part the area is enclosed between y 5   √
_____

 x 1 1   and y 5 2  √
_____

 x 1 1  , 
and the area in the second part is enclosed by y 5 1 2 x and y 5 2  √

_____
 x 1 1  :

2 ∫ 
 21

  
 0

      √
_____

 x 1 1   dx 1  ∫ 
  0

  
 3

   ((1 2 x) 2  ( 2  √
_____

 x 1 1  ) )  dx 

(Calculation is left as an exercise.)

In questions 1–22, sketch the region whose area you are asked for, and then 
compute the required area. In each question, find the area of the region bounded by 
the given curves.

 1 y 5 x 1 1, y 5 7 2 x 2  2 y 5 cos  x, y 5 x 2   p __ 2  , x 5 2p

 3 y 5 2x, y 5 x 2 2 2  4 y 5 x 3, y 5 x 2 2 2, x 5 1

 5 y 5 x 6, y 5 x 2  6 y 5 5x 2 x 2, y 5 x 2

 7 y 5 2x 2 x 3, y 5 x 2 x 2  8 y 5 sin  x, y 5 2 2 sin  x (one period)

 9 y 5   x __ 
2

  , y 5  √
__

 x  , x 5 9 10 y 5   x 4 ___ 
10

  , y 5 3x 2 x 3

11 y 5   1 __ x  , y 5   1 __ x 3  , x 5 8 12 y 5 2  sin  x, y 5  √
__

 3    tan  x, 2   p __ 4   < x <   p __ 4  

13 y 5 x 2 1 and y2 5 2x 1 6 14 x 5 2y2 and x 5 4 1 y2

15 4x 1 y2 5 12 and y 5 x 16 x 2 y 5 7 and x 5 2y2 2 y 1 3

17 x 5 y2 and x 5 2y2 2 y 2 2

18 y 5 x 3 1 2x 2, y 5 x 3 2 2x, x 5 23 and x 5 2

19 y 5 sec2 x, y 5 sec x tan x, x 5 2   p __ 3   and x 5   p __ 6  ,

20 y 5 x 3 1 1 and y 5 (x 1 1)2 21 y 5 x 3 1 x and y 5 3x 2 2 x

22 y 5 3 2   √
__

 x   and y 5   2  √
__

 x   1 1 _______ 2  √
__

 x     

23 Find the area of the shaded region.

Exercise 16.6

2

10�1�2�3 2 3

4

6

8

10

12

y � 8x2

y � 4 � 4x

y � 3x2

x

y
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 16.7 Volumes with integrals

Recall that the underlying principle for finding the area of a plane region is 
to divide the region into thin strips, approximate the area of each strip by 
the area of a rectangle, and then add the approximations and take the limit 
of the sum to produce an integral for the area. The same strategy can be 
used to find the volume of a solid.

The idea is to divide the solid into thin slabs, approximate the volume of 
each slab, add the approximations and take the limit of the sum to produce 
an integral of the volume.

Given a solid whose volume is to be computed, we start by taking cross- 
sections perpendicular to the x-axis as shown in Figure 16.9. Each slab will 
be approximated by a cylindrical solid whose volume will be equal to the 
product of its base times its height.

If we call the volume of the slab vi and the area of its base A(x), then 

vi 5 A(xi)h 5 A(xi)Dxi .

Using this approximation, the volume  
of the whole solid can be found by 

V   ∑ 
i 5 1

  

n

     A(xi) Dxi  .

Taking the limit as n increases and the 
widths of the sub-intervals approach  
zero yields the definite integral:

V 5   lim    
n → 

   ∑ 
i 5 1

  

n

     A(xi) Dxi  5  ∫ 
a
  
b 

   A(x)  dx

24 Find the area of the region enclosed by y 5 e x, x 5 0 and the tangent to y 5 e x at 
x 5 1.

25 Find the area of the region inside the ‘loop’ in the graph of the curve y2 5 x 4(x 1 3).

26 Find the area enclosed by the curve y2 5 2x 2 2 4x 4.

27 Find the area of the region enclosed by x 5 3y2 and x 5 12y 2 y2 2 5.

28 Find the area of the region enclosed by y 5 (x 2 2)2 and y 5 x(x 2 4)2.

29 Find a value for m . 0 such that the area under the graph of y 5 e 2x over the 
interval [0, m] is 3 square units.

30 Find the area of the region bounded by y 5 x 3 2 4x 2 1 3x and the x-axis.

A � area of base h � height

x

y

a

xi

S

b

0

xi � 1

x

y

xi � 1

0

The cylinder’s base
xi

Plane at xi

Plane at xi � 1

�xi � xi � xi � 1

 Hint: This is an introductory 
section that will not be examined. 
It is only used to give you an idea 
of why we use integrals to find 
volumes.

x

y

a
x

S

b

0

Cross-section
with area A(x)

Figure 16.9
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Note: If we place the solid along the y-axis and take the cross-sections 
perpendicular to that axis, we will arrive at a similar expression for the 
volume of the solid, i.e.

V 5   lim    
n → 

   ∑ 
i 5 1

  

n

      A(yi)yi 5  ∫ 
 a
  
b

   A(y)dy

Example 38 

Find the volume of the solid formed when the graph of the parabola  
y 5  √

___
 2x   over [0, 4] is rotated around the x-axis through an angle of 2p 

radians, as shown in the diagram.

Solution
The cross-section here is a circular disc whose radius is y 5   √

___
 2x  . Therefore, 

A(x) 5 pR2 5 p (  √
___

 2x   )2 5 2px.

The volume is then

V 5  ∫ 
0
  
4

   A(x)  dx 5  ∫ 
0
  
4

   2p x  dx 5 [2p   x 2 ___ 2   ]4

0
 5 16p cubic units.

Example 38 above is a special case of the general process for finding 
volumes of the so-called ‘solids of revolution’.

1 If a region is bounded by a closed interval [a,	b] on the x-axis and a function 
f (x) is rotated about the x-axis, the volume of the resulting solid of revolution 
is given by

V 5  ∫ 
a
  
b

 p ( f (x))2  dx .

y

y �     2x

x0 4x

R(x) �     2x

y

y �     2x

x

0

4

disc

x

R(x) �     2x

y

a x

f

b x0

f(x)

y

0 x
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Example 39 

Find the volume of a sphere with  
radius R 5 a.

Solution

If we place the sphere with its centre at the origin, the equation of the circle 
will be 

x 2 1 y 2 5 a 2 ⇒ y 5 6 √
_______

 a 2 2 x 2   .

The cross-section of the sphere, perpendicular to the x-axis, is a circular 
disc with radius y , so the area is

A (x) 5 p R2 5 p y2 5 p ( √
_______

 a 2 2 x 2   ) 5 p (a 2 2 x 2).

So, the volume of the sphere is

V 5  ∫ 
2a

  
a

    p (a 2 2 x 2) dx 5 p  [ a 2x 2   x 3 __ 
3

   ] 
a

2a
 

5 p  ( a 3 2   a
 3
 __ 

3
   )  2p  ( 2 a 3 1   a

 3
 __ 

3
   ) 

5 p  ( 2a 3 2 2   a 3 __ 
3

   )  5   4pa 3 _____ 
3

   .

 2 If the region bounded by a closed interval [c, d ] on the y-axis and a function 
g (y) is rotated about the y-axis, the volume of the resulting solid of revolution is 
given by

V 5  ∫ 
  d

  
c

 p(g (y))2dy. 

O

y

x

C

d

∆y { 

x � g(y)

xO

y

g(y)

y (x, y)

A(x) � π(a2 � x2)

x

�x

x
x

�a

a
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Note: If we want to rotate the right-hand region of the circle around the 
y-axis, then the cross-section of the sphere, perpendicular to the y-axis is a 
circular disc with radius x. Solving the equation for x instead:

x 2 1 y 2 5 a2 ⇒ x 5 6  √
______

 a2 2 y 2  , and hence the area is

A(y) 5 pR2 5 px 2 5 p   (   √
______

 a2 2 y 2   ) 2 5 p(a2 2 y 2), 
and the volume of the sphere is

V 5  ∫ 
  2a

  
a

    p (a2 2 y 2)dy  5 p   [ a2y 2   
y 3

 __ 
3

   ]  
2a

  
a

   5 p  ( a3 2   a
3
 __ 

3
   )  2 p  ( 2a3 1   a

3
 __ 

3
   ) 

  5 p  ( 2a3 2 2   a
3
 __ 

3
   )  5   4pa3

 ____ 
3

  

This is the same result as above.

Example 40 

Find the volume of the solid generated when the region enclosed by  
y 5   √

___
 3x  , x 5 3 and y 5 0 is revolved about the x-axis.

Solution

V 5  ∫ 
  0

  
3

   p(f (x))2dx

5 p ∫ 
0
  
3

   (  √
___

 3x  )2dx

5 3p   [   x 2 __ 
2

   ]  3 
0
 5   27p ____ 

2
  

Example 41 

Find the volume of the solid generated when the region enclosed by  
y 5   √

___
 3x  , y 5 3 and x 5 0 is revolved about the y-axis.

Solution

Here, we first find x as a function of y.

y 5   √
___

 3x   ⇒ x 5   
y 2

 __ 
3

  , the interval on the y-axis is [0, 3]

So, the volume required is

V 5  ∫ 
  0

  
3

   p   (   y 2
 __ 

3
   )  

2

 dy 5   p __ 
9

    ∫ 
  0

  
3

   y 4dy 5   p __ 
9

     [   y 5
 __ 5   ]  

0
  

3

  5   27p ____ 5   .

y

x

�3

�4

�2

�1

1

O

2

3

4

�1 1 2 3 4
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Washers
Consider the region R between two curves, y 5 f (x) and y 5 g (x), and 
from x 5 a to x 5 b where f (x) . g (x). Rotating R about the x-axis 
generates a solid of revolution S. How do we find the volume of S?

Consider an arbitrary point x in the interval [a, b]. The segment AB 
represents the difference f (x) 2 g (x). When we rotate this slice, the cross-
section perpendicular to the x-axis is going to look like a ‘washer’ whose 
area is

A 5 p(R2 2 r 2) 5 p((f (x))2 2 (g (x))2).

So, the volume of S is

V 5  ∫ 
 a
  
b

   A(x)dx 5 p ∫ 
 a
  
b

   (( f (x))2 2 (g (x))2)dx.

Note: If you are rotating about the y-axis, a similar formula applies.

V 5 p ∫ 
 c
  
d

   ((p(y))2 2 (q(y))2)dy

Note: To understand the washer more, you can think of it in the following 
manner: Let P be the solid generated by rotating the curve y 5 f (x) and Q 
be the solid generated by rotating the curve y 5 g (x). Then S can be found 
by removing the solid of revolution generated by y 5 g (x) from the solid 
of revolution generated by y 5 f (x), as shown.

Therefore, volume of S 5 volume of P 2 volume of Q. And this justifies 
the formula:

V 5 p ∫ 
 a
  
b

   ( f (x))2dx 2 p ∫ 
 a
  
b

   (g (x))2dx 5 p ∫ 
 a
  
b

    ( ( f (x))2 2 (g (x))2 ) dx

x

y

g(x)
g(x)

f(x)

f(x)

a x

A

B

b x

y

aOO O

B

bx

A

x

y

xa b

x

P

y

f(x)

g(x)

x

y

xOOO

y

Q

R = f(x)

r = f(x)

Area = �(R2 – r2)
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Example 42 

The region in the first quadrant  
between f (x) 5 6 2 x 2 and 

h(x) 5   8 __ 
x 2

   is rotated about the 

x-axis. Find the volume of the 
generated solid.

Solution

The rotated region is shown in the diagram. f (x) is larger than h(x)in this 
interval. Moreover, the two curves intersect at:

  8 __ 
x 2

   5 6 2 x 2 ⇒ x 5   √
__

 2  , x 5 2

Hence, the volume of the solid of revolution is

V 5 p ∫ 
   √

__
 2  
  

2

      ( (6 2 x 2)2 2   (   8 __ 
x 2

   )  
2
  ) dx

5 p ∫ 
    √

__
 2  
  

2

      ( x 4 2 12x 2 1 36 2   64 ___ 
x 4

   ) dx

5 p   [   x 5 __ 5   2 4x 3 1 36x 1   64 ___ 
3x 3

   ]  2 

5   736 2 512  √
__

 2   ___________ 
15

   p.

y

�1

�10

�5

0

5

10

x

An alternative method: Volumes by cylindrical shells
Consider the region R under the curve y 5 f (x). Rotate R about the y-axis. We divide 
R into vertical strips of width x each as shown. When we rotate a strip around the 
y-axis, we generate a cylindrical shell of x thickness and height f (x). To understand 
how we get the volume, we can cut the shell vertically as shown and ‘unfold’ it. The 
resulting rectangular parallelpiped has length 2px, height f (x) and thickness x.

So, the volume of this shell is

vi 5 length 3 height 3 thickness

5 (2px) 3 f (x) 3 x.

The volume of the whole solid is the sum of the volumes of these shells as the  
number of shells increases, and consequently

V 5   lim    
n → 

  ∑ 
i 5 1

  

v

      vi 5   lim    
x → 0

   ∑(2px) 3 f (x) 3 x

5 2p ∫ 
  a

  
b

   xf (x)dx.

In many problems involving rotation about the y-axis, this would be more accessible than the disc/washer method.

y

x
�x

x

x{

f(x)

f(x)

2πx

2πx ∆x

f(x)

  √
_
 2  
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Example 43 

Find the volume of the solid generated  
when we rotate the region under 

f (x) 5   2 ______ 
1 1 x 2

  , x 5 0 and x 5 3 around the y-axis.

Solution

Using the shell method, we have

V 5 2p ∫ 
  0

  
3

   x 3   2 ______ 
1 1 x 2

  dx

5 2p ∫ 
  0

  
3

     2x ______ 
1 1 x 2

   dx 5 2p ∫ 
1
  
10

     du ___ u  

5 2p[ln u]  10
      1     5 2p ln 10.

�4 �3 �2 �1 0 1 2 3 4

0

�1

1

2

3

x

y

In questions 1–19, find the volume of the solid obtained by rotating the region 
bounded by the given curves about the x-axis. Sketch the region, the solid and a 
typical disc.

 1 y 5 3 2   x __ 
3

  , y 5 0, x 5 2, x 5 3  2 y 5 2 2 x 2, y 5 0

 3 y 5   √
_______

 16 2 x 2  , y 5 0, x 5 1, x 5 3  4 y 5   3 __ x  , y 5 0, x 5 1, x = 3

 5 y 5 3 2 x, y 5 0, x 5 0  6 y 5   √
____

 sin  x  , y 5 0, 0 < x < p

 7 y 5  √
_____

 cos  x  , y 5 0, 2   p __ 2   < x <   p __ 3    8 y 5 4 2 x 2, y 5 0

 9 y 5 x 3 1 2x 1 1, y 5 0, x 5 1 10 y 5 24 x 2 x 2, y 5 x 2

11 y 5 sec x, x 5   p __ 4  , x 5   p __ 3  , y 5 0 12 y 5 1 2 x	2, y 5 x	3 1 1

13 y 5   √
_______

 36 2 x	2  , y 5 4 14 x 5   √
__

 y  , y 5 2x

15 y 5 sin x, y 5 cos x, x 5   p __ 4  , x 5   p __ 2   16 y 5 2x	2 1 4, y 5 x, x 5 1, x 5 3

17 y 5   √
______

 x	4 1 1  , y 5 0, x 5 1, x 5 3 18 y 5 16 2 x, y 5 3x 1 12, x 5 21

19 y 5   1 __ x  , y 5   5 __ 2   2 x

20 Find the volume resulting from a 
rotation of this region about

a) the x-axis

b) the y-axis.

Exercise 16.7

y

x

1

1O�1

�1

�2 2

2

3

4

y � 3 � x2

y � 2x
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 16.8 Modelling linear motion

In previous sections of this text, we have examined problems involving 
displacement, velocity and acceleration of a moving object. In different 
sections of Chapter 13, we applied the fact that a derivative is a rate of 
change to express velocity and acceleration as derivatives. Even though our 
earlier work on motion problems involved an object moving in one, two or 
even three dimensions, our mathematical models considered the object’s 
motion occurring only along a straight line. For example, projectile motion 
(e.g. a ball being thrown) is often modelled by a position function that 
simply gives the height (displacement) of the object. In that way, we are 
modelling the motion as if it were restricted to a vertical line.

In this section, we will again analyze the motion of an object as if its 
motion takes place along a straight line in space. This can only make sense 
if the mass (and thus, size) of the object is not taken into account. Hence, 
the object is modelled by a particle whose mass is considered to be zero. 
This study of motion, without reference either to the forces that cause it or 
to the mass of the object, is known as kinematics.

Displacement and total distance travelled
Recall from Chapter 13 that given time t, displacement s, velocity v and 
acceleration a, we have the following:

v 5   ds __ 
dt

  , a 5   dv __ 
dt

  , and a 5   d __ 
dt

    (   ds __ 
dt

   )  5   d  2s ___ 
dt 2

  

In questions 21–31, find the volume of the solid obtained by rotating the region 
bounded by the given curves about the y-axis. Sketch the region, the solid and a 
typical disc/shell.

21 y 5 x 2, y 5 0, x 5 1, x 5 3 

22 y 5 x, y 5   √
______

 9 2x 2  , x 5 0

23 y 5 x 3 2 4x 2 1 4x, y 5 0 

24 y 5   √
___

 3x  , x 5 5, x 5 11, y 5 0

25 y 5 x 2, y 5   2 ______ 
1 1 x 2   

26 y 5   √
______

 x 2 1 2  , x 5 3, y 5 0, x 5 0

27 y 5   7x _______ 
  √

______

 x 3 1 7  
  , x 5 3, y 5 0 

28 y 5 sin x, y 5 cos x, x 5   p __ 4  , x 5   p __ 2  

29 y 5 2x 2 1 4, y 5 x, x 5 1, x 5 3 

30 y 5 sin(x 2), y 5 0, x 5 0, x 5   √
__

 p  

31 y 5 5 2 x 3, y 5 5 2 4x
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Let’s review some of the essential terms we use to describe an object’s 
motion.

Position, distance and displacement
● The position s of a particle, with respect to a chosen axis, is a measure of how far it is 

from a fixed point (usually the origin) and of its direction relative to the fixed point.

● The distance |s| of a particle is a measure of how far it is from a fixed point (usually 
the origin) and does not indicate direction. Thus, distance is the magnitude of position 
and is always positive.

● The displacement is the change in position. The displacement of an object may be 
positive, negative or zero, depending on its motion.

It is important to understand the difference between displacement and 
distance travelled. Consider a couple of simple examples of an object 
moving along the x-axis. 

1.  In this first example, assume that the object does not change direction 
during the interval 0 < t < 5. In other words, its velocity does not 
change from positive to negative or from negative to positive. If the 
position of the object at t 5 0 is x 5 2 and then the object moves so that 
at t  5  5 its position is x 5 23, its displacement, or change in position, 
is 25 because the object changed its position by 5 units in the negative 
direction. This can be calculated by (final position) 2 (initial position) 
5 23 2 2 5 25. However, the distance travelled would be the absolute 
value of displacement, calculated by |final position 2 initial position| 
5 |23 2 2| 5 15.

2. In this example, the object’s initial and final positions are the same as 
in the first example – that is, at t 5 0 its position is x 5 2 and at t 5 5 
its position is x 5 23. However, the object changed direction in that it 
first travelled to the left (negative velocity) from x 5 2 to x 5 25 during 
the interval 0 < t < 3, and then travelled to the right (positive velocity) 
from x 5 25 to x 5 23. The object’s displacement is 25 – the same as in 
the first example because its net change in position is just the difference 
between final and initial positions. However, it’s clear that the object 
has travelled further than in the first example. But we cannot calculate 
it in the same way as we did in the first example. We will have to make a 
separate calculation for each interval where the direction changed. Hence, 
total distance travelled 5 |25 2 2| 1 |23 2 (25)| 5 7 1 2 5 9.

x�5 �4 �3 �2 �1 0 1 2 3 4 5

x�5

3 � t � 5
0 � t � 3

�4 �3 �2 �1 0 1 2 3 4 5
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Velocity and speed

● The velocity v 5   ds ___ dt   of a particle is a measure of how fast it is moving and of its 
direction of motion relative to a fixed point.

● The speed |v| of a particle is a measure of how fast it is moving and does not indicate 
direction. Thus, speed is the magnitude of velocity and is always positive.

Acceleration

● The acceleration a 5   dv ___ dt   of a particle is a measure of how fast its velocity is changing.

Example 44 

The displacement s of a particle on the x-axis, relative to the origin, is given 
by the position function s (t) 5 2t 2 1 6t, where s is in centimetres and t is 
in seconds.

a) Find a function for the particle’s velocity v (t) in terms of t. Graph the 
functions s (t) and v (t) on separate axes.

b) Find the particle’s position at the following times: t 5 0, 1, 3 and 
6  seconds.

c) Find the particle’s displacement for the following intervals: 0 < t < 1, 
1  < t < 3, 3 < t < 6 and 0 < t < 6.

d) Find the particle’s total distance travelled for the following intervals: 
0  < t < 1, 1 < t < 3, 3 < t < 6 and 0 < t < 6.

Solution

a) v (t) 5   d __ 
dt

   (2t 2 1 6t) 5 22t 1 6

b) The particle’s position at:
• t 5 0 is s (0) 5 2(0)2 1 6(0) 5 0  cm
• t 5 1 is s (1) 5 2(1)2 1 6(1) 5 5  cm
• t 5 3 is s (3) 5 2(3)2 1 6(3) 5 9  cm
• t 5 6 is s (6) 5 2(6)2 1 6(6) 5 0  cm

c) The particle’s displacement for the interval:
• 0 < t < 1 is D position 5 s (1) 2 s (0) 5 5 2 0 5 5  cm
• 1 < t < 3 is D position 5 s (3) 2 s (1) 5 9 2 5 5 4  cm
• 3 < t < 6 is D position 5 s (6) 2 s (3) 5 0 2 9 5 29  cm
• 0 < t < 6 is D position 5 s (6) 2 s (0) 5 0 2 0 5 0  cm

There is no separate word to 
describe the magnitude of 
acceleration, |a|.

The definite integral is a 
mathematical tool that can be 
used in applications to calculate 
net change of a quantity  
(e.g. D position → displacement)
 and total accumulation  
(e.g. S area → volume). s�6 �4�5 �3 �2 �1 0 1 2 3 4 65

t

s

�10

�5

5

0

10

Position function: s(t) � �t2 � 6t

�1 1 2 3 4 5 6 7
t

s

�10

�5

5

0

10

Velocity function: v(t) � s�(t) � �2t � 6

�1 1 2 3 4 5 6 7
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This last result makes sense considering the particle moved to the right 
9  cm then at t 5 3 turned around and moved to the left 9  cm, ending where 
it started – thus, no change in net position.

d) The particle’s total distance travelled for the interval: 
• 0 < t < 1 is |s (1) 2 s (0)| 5 |5 2 0| 5 5  cm
• 1 < t < 3 is |s (3) 2 s (1)| 5 |9 2 5| 5 4  cm
• 3 < t < 6 is |s (6) 2 s (3)| 5 |0 2 9| 5 |29| 5 9  cm
• 0 < t < 6: The object’s motion changed direction (velocity 5 0) at 

t 5 3, so total distance is |s (3) 2 s (0)| 1 |s (6) 2 s (3)| 
 5 |9 2 0| 1 |0 2 9| 5 9 1 9 5 18  cm

Since differentiation of the position function gives the velocity function 

 ( i.e. v 5   ds __ 
dt

   ) , we expect that the inverse of differentiation, integration, will 

lead us in the reverse direction – that is, from velocity to position. When 
velocity is constant, we can find the displacement with the formula: 

displacement 5 velocity 3 D in time

If we drove a car at a constant velocity of 50  km/h for 3 hours, our 
displacement (same as distance travelled in this case) is 150  km. If a 
particle travelled to the left on the x-axis at a constant rate of 24 units/sec 
for 5 seconds, the particle’s displacement is 220 units.

The velocity–time graph below depicts an object’s motion with a constant 
velocity of 5  cm/s for 0 < t < 3. Clearly, the object’s displacement is 5  cm/s 
3 3 sec 5 15  cm for this interval.

The rectangular area (3 3 5 5 15) under the velocity curve is equal to the 
object’s displacement.

Looking back at Example 44, consider the area under the graph of v (t) 
from t 5 0 to t 5 3.

Given the discussion above, we should not be surprised to see that the area 
under the velocity curve for a certain interval is equal to the displacement 

t

v
v(t) � 5

5

0 1 2 3 t

v
v(t) � 5

5

0 1 2 3

t

s

�10

�5

5

0

10

Velocity function: v(t) � s�(t) � �2t � 6

�1 1 2 3

6

0

Area �    � 3 � 6 � 9

3
4 5 6 7

1
2
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for that interval. We can argue that just as the total area can be found by 
summing the areas of narrow rectangular strips, the displacement can be 
found by summing small displacements (v Dt). Consider:

displacement 5 velocity 3 D in time ⇒ s 5 v Dt ⇒ s 5 v dt

We learned earlier in this chapter that if f (x) > 0 then the definite integral 

 ∫ 
a
  
b

   f (x)  dx gives the area between y 5 f (x) and the x-axis from x 5 a to 

x 5 b. And if f (x) < 0 then  ∫ 
a
  
b

   f (x)  dx gives a number that is the opposite 

of the area between y 5 f (x) and the x-axis from a to b. 

Using integration to find displacement and total distance travelled
Given that v (t) is the velocity function for a particle moving along a line, then:

 ∫ 
a
  
b    

   v (t)  dt gives the displacement from t 5 a to t 5 b.

 |  ∫ 
a
  
b    

   v (t)  dt |  gives the total distance travelled from t 5 a to t 5 b if the particle does not 

change direction during the interval a , t , b.

If a particle changes direction at some t 5 c for a , c , b, the total distance 

travelled for the particle is given by  |  ∫ 
 a
  
c    

   v (t)  dt |  1  |  ∫ 
 c
  
b    

   v (t)  dt | .
In general, the total distance travelled by an object from time t0 to t1, with many switches

in direction is given by  ∫ 
  t0

  
t1

 |v (t)|dt .

Let’s apply integration to find the displacement and distance travelled for 
the two intervals 3 < t < 6 and 0 < t < 6 in Example 40.
• For 3 < t < 6:

Displacement 5  ∫ 
3
  
6

   (22t 1 6) dt 5 [2t 2 1 6t]6

3
 

5  [ 2(6)2 1 6(6) ]  2  [ 2(3)2 1 6(3) ]  5 0 2 9 5 29

Distance travelled 5  |  ∫ 
 3
  
6

  (22t 1 6)   |  dt 5  |  [2t 2 1 6t ] 
3
  

6

  | 
5  |  [ 2(6)2 1 6(6) ]  2  [ 2(3)2 1 6(3) ]  | 5 |0 2 9| 5 9

• For 0 < t < 6:

Displacement 5  ∫ 
0
  
6

   (22t 1 6) dt 5 [2t 2 1 6t]6

0
 

5  [ 2(6)2 1 6(6) ]  2  [ 0 ]  5 0

Distance travelled 5  |  ∫ 
 0
  
3

   (22t 1 6) dt |  1  |  ∫ 
 3
  
6

   (22t 1 6) dt | 
  Particle changed direction at t 5 3.

5  |  [2t 2 1 6t ] 
3
  

6

  |  1  |  [2t 2 1 6t ] 
3
  

6

  | 
5 |(29 1 18) 2 0| 1 |0 2 (29 1 18)| 

5 |9| 1 |29| 5 9 1 9 5 18
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Example 45 

The function v (t) 5 sin(pt) gives the velocity in m/s of a particle moving 
along the x-axis.

a) Determine when the particle is moving to the right, to the left, and 
stopped. At any time it stops, determine if it changes direction at that 
time.

b) Find the particle’s displacement for the time interval 0 < t < 3.

c) Find the particle’s total distance travelled for the time interval 0 < t < 3.

Solution

a) v (t) 5 sin(pt) 5 0 ⇒ sin(k p) 5 0 for k  핑 ⇒ pt 5 kp  ⇒ t 5 k, k 
 핑 for 0 < t < 3, t 5 0, 1, 2, 3. Therefore, the particle is stopped at t  5 
0, 1, 2, 3.

 Since t 5 0 and t 5 3 are endpoints of the interval, the particle can only 
change direction at t 5 1 or t 5 2.

 v (  1 _ 2  )  5  sin(p    1 _ 2  )  5  1; v (  3 _ 2  )  5  sin(p    3 _ 2  )  5  21  ⇒ direction changes at t 5 1

v (  3 _ 2  ) 5 sin(p    3 _ 2  ) 5 21; v (  5 _ 2  ) 5 sin(p    5 _ 2  ) 5 1 ⇒ direction changes again 
at t 5 2

b) Displacement 5  ∫ 
0
  
3

 sin(pt) dt 5 [2   1 __ p    cos(pt)  ]3

0

5  2   1 __ p   cos(3p)  2   ( 2   1 __ p    cos(0) )  5  2   1 __ p   (21)  1   1 __ p   (1) 5    2 __ p      0.637 metres

c) Total distance travelled 5  |  ∫ 
 0
  
1

   sin(pt) dt |  1  |  ∫ 
 1
  
2

   sin(pt) dt |  
1  |  ∫ 

 2
  
3

   sin(pt) dt |  5   |  [2    1 __ p    cos(pt) ] 
0
  

1

  | 

1  |  [2   1 __ p    cos(pt) ] 
1
  

2

   |  1  |  [2   1 __ p    cos(pt) ] 
2
  

3

   | 
5  |    2 __ p    |  1  | 2   2 __ p    | 1  |    2 __ p    |  5   6 __ p    1.91 metres

Note that, in Example 45, the position function is not known precisely. 
The position function can be obtained by finding the anti-derivative of the 
velocity function.

s (t) 5 ∫v (t) dt 5 ∫sin(pt) dt 5 2   1 __ p     cos(pt) 1 C

We can only determine the constant of integration C if we know the 
particle’s initial position (or position at any other specific time). However, 
the particle’s initial position will not affect displacement or distance 
travelled for any interval.
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Position and velocity from acceleration
If we can obtain position from velocity by applying integration then we 
can also obtain velocity from acceleration by integrating. Consider the 
following example.

Example 46 

The motion of a falling parachutist is modelled as linear motion by 
considering that the parachutist is a particle moving along a line whose 
positive direction is vertically downwards. The parachute is opened at t  5  0 
at which time the parachutist’s position is s 5 0. According to the model, 
the acceleration function for the parachutist’s motion for t . 0 is given by:

a (t) 5 254e21.5t

a) At the moment the parachute opens, the parachutist has a velocity of 
42  m/s. Find the velocity function of the parachutist for t . 0. What 
does the model say about the parachutist’s velocity as t → ?

b) Find the position function of the parachutist for t . 0.

Solution

a) v (t) 5 ∫a (t) dt 5 ∫(254e21.5t ) dt

5 254 (    1 _____ 
21.5

   ) e21.5t  1 C

5 36e21.5t  1 C

Since v 5 42 when t 5 0, then 42 5 36e 0 1 C ⇒ 42 5 36 1 C ⇒ C 5 6

Therefore, after the parachute opens (t . 0) the velocity function is 
v (t)   5 36e21.5t 1 6.

Since   lim    
t  → 

  e21.5t 5   lim    
t  → 

     1 ___ 
e1.5t   5 0, then as t → ,   lim    

t  → 
  v (t) 5 6  m/sec.

b) s (t) 5 ∫v (t) dt 5 ∫(36e21.5t  1 6) dt

5 36 (    1 _____ 
21.5

   ) e21.5t  1 6t 1 C

5 224e21.5t  1 6t 1 C

Since s 5 0 when t 5 0, then 0 5 224e 0 1 6(0) 1 C  
 ⇒ 0 5 224 1 C ⇒ C 5 24

Therefore, after the parachute opens (t . 0) the position function is 
s (t)   5 224e21.5t 1 6t 1 24.

Uniformly accelerated motion
Motion under the effect of gravity in the vicinity of Earth (or other 
planets) is an important case of rectilinear motion. This is called uniformly 
accelerated motion.

The limit of the velocity as  
t → , for a falling object, is 
called the terminal velocity of 
the object. While the limit  
t →  is never attained (the 
parachutist eventually lands on 
the ground), the velocity gets 
close to the terminal velocity 
very quickly. For example, after 
just 8 seconds, the velocity is  
v (8) 5 36e 21.5(8) 1 6  6.0002  m/s.
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If a particle moves with constant acceleration along the s-axis, and if we 
know the initial speed and position of the particle, then it is possible to 
have specific formulae for the position and speed at any time t. This is how:

Assume acceleration is constant, i.e. a(t) 5 a, v(0) 5 v0 and s(0) 5 s0.

v (t) 5 ∫adt 5 at 1 c, we know that v(0) 5 v0, then

v (0) 5 v0 5 a(0) 1 c ⇒ c 5 v0; hence v(t) 5 at 1 v0

s(t) 5 ∫v(t)dt 5 ∫(at 1 v0)dt 5   1 _ 2   at 2 1 v0t 1 c, but s(0) 5 s0, then

s(0) 5 s0 5   1 _ 2  a(02) 1 v0(0) 1 c ⇒ c 5 s0; hence

s(t) 5   1 _ 2  at 2 1 v0t 1 s0

When this is applied to a free-fall model (s-axis vertical), then

v (t) 5 2gt 1 v0, and

s(t) 5 2   1 _ 2  gt 2 1 v0t 1 s0, where g 5 9.8 m/s2.

Example 47 

A ball is hit, from a point 2 m above the ground, directly upward with 
initial velocity of 45 m/s. How high will the ball travel?

Solution

v (t) 5 29.8t 1 45

s(t) 5 2   1 _ 2  (9.8)t 2 1 45t 1 2 5 24.9t 2 1 45t 1 2

The ball will rise till v (t) 5 0, ⇒ 0 5 29.8t 1 45, ⇒ t  4.6 s

At this time,

s(4.6) 5 24.9(4.6)2 1 45(4.6) 1 2  105.32m.

Example 48 

Tim is running at a constant speed of 5 m/s to catch a bus that stopped 
at the station. The bus started as it was 11 m away with an acceleration of 
1 m/s2. How long will it take Tim to catch up with the bus?

Tim

11 m
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Solution

To catch the bus at some time t, Tim will have to cover a distance sT that is 
equal to 11 m plus sb travelled by the bus.

sT  5 5t

sb 5   1 _ 2  t 2

But sT 5 sb 1 11 5   1 _ 2  t 2 1 11, therefore

5t 5   1 _ 2  t 2 1 11 ⇒ t 2 2 10t 1 22 5 0

So, t  3.3 s, or t  6.7 s.

Note: The reason we have two answers is that since Tim is travelling at a 
constant rate he may miss the door at first, and if he continues, the bus will 
catch up with him 6.7 s later!

Exercise 16.8

In questions 1–6, the velocity of a particle along a rectilinear path is given by the 
equation v(t) in m/s. Find both the net distance and the total distance it travels 
between the times t	5	a and t	5	b.

 1 v(t) 5 t 2 2 11t 1 24, a 5 0, b 5 10

 2 v(t) 5 t 2   1 __ 
t 2

  , a 5 0.1, b 5 1

 3 v(t) 5 sin  2t, a 5 0, b 5   p __ 2  

 4 v(t) 5 sin  t 1 cos   t, a 5 0, b 5 p

 5 v(t) 5 t 3 2 8t2 1 15t, a 5 0, b 5 6

 6 v(t) 5 sin (   p t ___ 2   )  1 cos (   p t ___ 2   ) , a 5 0, b 5 1

In questions 7–11, the acceleration of a particle along a rectilinear path is given by 
the equation a(t) in m/s2, and the initial velocity v0 m/s is also given. Find the velocity 
of the particle as a function of t,	and	both the net distance and the total distance it 
travels between the times t	5	a and t	5	b.

 7 a(t) 5 3, v0 5 0, a 5 0, b 5 2

 8 a(t) 5 2t 2 4, v0 5 3, a 5 0, b 5 3

 9 a(t) 5 sin t, v0 5 0, a 5 0, b 5   3p ___ 2  

10 a(t) 5   21 ______ 
 √

_____
 t 1 1  
  , v0 5 2, a 5 0, b 5 4

11 a(t) 5 6t 2   1 ______ 
(t 1 1)3  , v0 5 2, a 5 0, b 5 2

In each question 12–15, the velocity and initial position of an object moving along a 
coordinate line are given. Find the position of the object at time t.

12 v 5 9.8t 1 5, s(0) 5 10

13 v 5 32t 2 2, s(0.5) 5 4

14 v 5 sin pt, s(0) 5 0

15 v 5   1 _____ 
t 1 2  , t . 22, s(21) 5   1 __ 2  
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In each question 16–19, the acceleration is given as well as the initial velocity and 
initial position of an object moving on a coordinate line. Find the position of the 
object at time t.

16 a 5 et, v(0) 5 20, s(0) 5 5

17 a 5 9.8, v(0) 5 23, s(0) 5 0

18 a 5 24 sin 2t, v(0) 5 2, s(0) 5 23

19 a 5   9 ___ 
p 2

   cos   3t __ p  , v(0) 5 0, s(0) 5 21

In questions 20–23, an object moves with a speed of v (t) m/s along the s-axis. Find 
the displacement and the distance travelled by the object during the given time 
interval.

20 v(t) 5 2t 2 4; 0 < t < 6

21 v(t) 5 |t 2 3|; 0 < t < 5

22 v(t) 5 t3 2 3t2 1 2t; 0 < t < 3

23 v(t) 5   √
_
 t   2 2; 0 < t < 3

In questions 24–26, an object moves with an acceleration a(t) m/s2 along the s-axis. 
Find the displacement and the distance travelled by the object during the given 
time interval.

24 a(t) 5 t 2 2, v0 5 0, 1 < t < 5

25 a(t) 5   1 _______ 
  √

______
 5t 1 1  
  , v0 5 2, 0 < t < 3

26 a(t) 5 22, v0 5 3, 1 < t < 4

27 The velocity of an object moving along the s-axis is

v 5 9.8t 2 3.

a) Find the object’s displacement between t 5 1 and t 5 3 given that s(0) 5 5.

b) Find the object’s displacement between t 5 1 and t 5 3 given that s(0) 5 22.

c) Find the object’s displacement between t 5 1 and t 5 3 given that s(0) 5 s0.

28 The displacement s metres of a moving object from a fixed point O at time t 
seconds is given by s(t) 5 50t 2 10t2 1 1000.

a) Find the velocity of the object in m s21.

b) Find its maximum displacement from O.

29 A particle moves along a line so that its speed v at time t is given by

v(t) 5 { 5t, 0 < t , 1

6  √
_
 t   2   1 __ t  , t > 1

where t is in seconds and v is in cm/s. Estimate the time(s) at which the particle is 
4 cm from its starting position.

30 A projectile is fired vertically upward with an initial velocity of 49 m/s from a 
platform 150 m high.

a) How long will it take the projectile to reach its maximum height?

b) What is the maximum height?

c) How long will it take the projectile to pass its starting point on the way down?

d) What is the velocity when it passes the starting point on the way down?

e) How long will it take the projectile to hit the ground?

f ) What will its speed be at impact?
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 16.9 Differential equations (Optional)

This section presents only an introduction to differential equations. More 
on differential equations can be found in the Options part: Calculus.

A differential equation is an equation that relates an unknown function 
and one or more of its derivatives. A first-order differential equation is 
an equation that involves an unknown function and its first derivative. 
Examples of first-order differential equations are:

y 1 2xy 5 sin x,   
dy

 ___ 
dx

   5 y 1 2x, and   
dy

 ___ 
dx

   5 2ky

In this part of the textbook we will consider only first-order differential 
equations that can be written in the form

  
dy

 ___ 
dx

   5 f (x, y).

Here f (x, y) is a function of two variables defined on a region in the 
xy-plane. By a solution to the differential equation, we mean the following.

Solution of a differential equation

We say that a differentiable function y 5 y(x) is a solution to the differential 
equation

  
dy

 ___ 
dx

   5 f (x, y)

on an interval of x-values (sometimes ) when

  d ___ 
dx

   y (x) 5 f (x, y(x)).

The initial condition y (x0) 5 y 0 amounts to requiring the solution curve 
y 5 y (x) to pass through the point (x0, y 0).

Let us clarify these initial ideas by some examples.

Note: In algebra we usually seek the unknown variable values that satisfy 
an equation such as 3x 2 2 2x 2 5 5 0. By contrast, in solving a differential 
equation, we are looking for the unknown functions y 5 y (x) for which an 
identity such as y (x) 5 3x 2y (x) holds on some interval of real numbers. 
Usually, we will desire to find all solutions of the differential equation, if 
achievable.

Example 49 

Verify that y (x) 5 Ce x 3 is a solution to the differential equation

  
dy

 ___ 
dx

   5 3x 2y.

By y(x), we mean ‘y of x’, i.e. 
y as a function of x, and not 
‘y times x’. 
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Solution

Since C is a constant in y (x) 5 Ce x 
3
, then

  
dy

 ___ 
dx

   5 C (3x 2e x 3) 5 3x 2(Ce x 
3
) 5 3x 2y.

Consequently every function y (x) of the form y (x) 5 Ce x 3 satisfies – and 
thus is a solution of – the differential equation

  
dy

 ___ 
dx

   5 3x 2y

for all real x. In fact y (x) 5 Ce x 3 defines an infinite family of different 
solutions to this differential equation, one for each choice of the arbitrary 
constant C.

Example 50 

Verify that

y (x) 5 2   1 _______ 
2x 4 1 3

  

is a solution to the differential equation

  
dy

 ___ 
dx

   5 8x 3y 2

over the interval ]2, [.

Solution

Notice that the denominator in y (x) is never zero and that y (x) is 
differentiable everywhere. Furthermore, for all real numbers x,

  d ___ 
dx

    y (x) 5   d ___ 
dx

    ( 2   1 _______ 
2x 4 1 3

   )  5   8x 3 _________ 
(2x 4 1 3)2  

5 8x 3  ( 2   1 _______ 
2x 4 1 3

   )  
2
  5 8x 3y 2

�3

�2

�1

�1�2 1 2 x

1

2

3

y
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Thus,

y (x) 5 2   1 _______ 
2x 4 1 3

  

is a solution to the given differential equation.

Differential equations as mathematical models

The following examples illustrate typical cases where scientific principles 
are translated into differential equations.

1  Newton’s law of cooling states that the rate of change of the 
temperature T of an object is proportional to the difference between T 
and the temperature of the surrounding medium S.

That is,

  dT ___ 
dt

   5 k(T 2 S)

where k is a constant and S is usually 
considered constant.

2  Population growth rate in cases where the birth and death rates are not 
variable is proportional to the size of the population. That is,

  dP ___ 
dt

   5 kP

where k is a constant.

Shortly, we will learn how to solve such problems.

Separable differential equations

In this section, we will limit our discussion to one basic type, the separable 
differential equations, also called variables-separable differential 
equations.

The first-order differential equation

  
dy

 ___ 
dx

   5 f (x, y)

is called variable separable when the function f (x, y)can be factored into a 
product or quotient of two functions such as

  
dy

 ___ 
dx

   5 g (x)h(y) or   
dy

 ___ 
dx

   5   
p(x)

 ____ 
q(y)

   .

In such cases, the variables x and y can be separated by writing

  
dy

 ____ 
h(y)

   5 g (x)dx or q(y)dy 5 p(x)dx

Temperature S

Temperature T
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and then simply integrating both sides with respect to x. That is,

∫   dy
 ____ 

h(y)
   5 ∫g (x)dx 1 c or ∫q(y)dy 5 ∫p(x)dx 1 c.

Note: You need to remember that h(y) is a continuous function of y 
alone and g (x) is a continuous function of x alone. The same goes for 
q (y) and p(x).

Note: We also may say that the method of solution is separation of 
variables.

Here are some examples of differential equations that are separable

Original differential equation Rewritten with variables separated

(x 2 1 4)y9 5 3xy   
dy

 ___ y   5   3x ______ x 2 1 4
   dx

  
3xeyy9

 _______ 
1 1 e 2y   5 5   3ey

 ______ 
1 1 e 2y   dy	5   5 __ x   dx

  
dy

 ___ 
dx   5 xy 1 4 Not separable!

3x 2 1 y   
dy

 ___ 
dx   5 7 y dy 5 (7 2 3x 2)dx

x 2   
dy

 ___ 
dx   1 y2 5 xy2   1 __ y2   dy 5   

(x 2 1)
 ______ x 2   dx

y2   
dy

 ___ 
dx  	1	x 2 5 xy2 Not separable!

We will end this section by looking at a few examples.

Example 51 

Solve

y9 2 9x 2y 2 5 5y 2.

Solution

We first factor the equation to separate the variables.

  
dy

 ___ 
dx

   5 5y 2 1 9x 2y 2 ⇒   
dy

 ___ 
dx

   5 y 2(5 1 9x 2)

⇒   
dy

 __ 
y 2

   5 (5 1 9x 2)dx

⇒ 2   1 __ y   5 5x 1 3x 3 1 c

⇒ y 5   21 ___________ 
5x 1 3x 3 1 c

  

This is a general solution for the differential equation. In this case we are 
able to express this function in explicit form.
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Example 52 

Solve

  
dy

 ___ 
dx

   5   
3x 2y

 _______ 
1 1 4y 2

   .

Solution

With very few steps, we can separate the variables:

  
1 1 4y 2

 _______ y    5 3x 2dx

And now we can integrate both sides:

∫   1 1 4y 2
 _______ y    dy 5 ∫3x 2dx ⇔ ∫  (   1 __ y   1 4y ) dy 5 ∫3x 2dx

ln|y | 1 2y 2 5 x 3 1 c

For every value of arbitrary constant c, this defines an exact but implicit 
solution y (x) as it cannot be written in an explicit form y 5 f (x).

Here are some of the solution curves for a few values of c.

Note: Here is a summary of solving equations by separation of variables.

1 Write the differential equation in the standard form   
dy

 ___ 
dx

   5 f (x, y).

2 Can you separate the variables, i.e. is   
dy

 ___ 
dx

   5 g (x)h(y) or   
dy

 ___ 
dx

   5   
p(x)

 ____ 
q(y)

  ?

3 If so, separate the variables, to get   
dy

 ____ 
h(y)

   5 g (x)dx or q(y)dy 5 p(x)dx.

4 Integrate both parts to get ∫   dy
 ____ 

h(y)
   5 ∫g (x)dx 1 c or ∫q(y)dy 

 5 ∫p(x)dx 1 c.

�3

�4

�2

�1

�1�2�3 1 2 3 xO

1

2

3

4
y
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5 Do the integrals if you can and don’t forget the arbitrary constant. Even 
though we have two integrals, one on the left and one on the right, it is 
enough to combine both arbitrary constants with one.

6 If possible, resolve the resulting equation with respect to y, to get your 
equation in explicit form y 5 f (x).

Example 53 

Find the general solution of the population growth model

  dP ___ 
dt

   5 kP.

Solution

In this problem, we can easily separate the variables.

  dP ___ 
P

   5 kt

Now integrate both sides to get

∫   1 __ 
P

   dP 5 ∫k dt

ln|P  | 5 kt 1 c

where c is an arbitrary constant. This last equation can be simplified to 
render an explicit expression for P :

ln|P  | 5 kt 1 c

⇒ |P  | 5 e kt 1 c 5 e ktec 5 Ae kt

where we replaced e c with A. Thus,

P 5 Ae kt or P 5 2Ae kt.

This is the general solution and all solutions to  
this problem will be in this form.

If the constant k is positive, the model describes 
population growth; if it is negative, it is decay.

The first one corresponds to positive values of  
k and the second to negative values of k.

If the problem above had the additional ‘initial  
value’ that at t0 the population is P0, then this 
particular population satisfies

P 5 Ae kt

and hence

P0 5 Ae kt0 ⇒ A 5   
P0 ___ 
e kt 0

   5 P0e
 2kt0

y

�1

1�1�2�3�4 2 3O

2

1

3

4

y

�1

1�1�2�3�4 2 3O

2

1

3

4
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and the solution to the initial value problem is

P 5 Ae kt 5 P0e
2kt0e kt 5 P0e k(t  2 t0).

There is a very important special case when t 0 5 0. The solution becomes

P 5 P0e k(t  2 t0) 5 P0e kt

which is the usual growth model which starts at time t 5 0 with initial 
population P0.

Example 54 

If a cold object is placed in warmer medium that is kept at a constant 
temperature S, then the rate of change of the temperature T(t) with 
respect to time t is proportional to the difference between the surrounding 
medium and the object and hence it satisfies

  dT ___ 
dt

   5 k(S 2 T  )  T (0) 5 T0

where k . 0 and T0 , S, i.e. the initial temperature is less than the 
temperature of the surrounding medium. Find the solution to the initial 
value problem.

Solution

It is immediately apparent that this is a variables separable type of 
differential equations as:

  dT ___ 
dt

   5 k (S 2 T  ) ⇔   dT _____ 
S 2 T

   5 k dt

We integrate and find the general solution first.

  ∫   dT _____ 
S 2 T

   5 ∫k dt

 2ln|S 2 T  | 5 kt 1 c1

 ln|S 2 T  | 5 2kt 2 c1

where c1 is an arbitrary constant. Now since we know that the temperature 
T is less than the surrounding temperature, then

ln|S 2 T  | 5 ln(S 2 T  ).

The general solution then is:

ln(S 2 T  ) 5 2kt 2 c1

S 2 T 5 e2kt  2 c1

T 5 S 2 e2kt  2 c1
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The initial condition implies:

T 5 S 2 e2kt  2 c1

T0 5 S 2 e 0  2 c1

e2c1 5 S 2 T0

2c1 5 ln(S 2 T0)

c1 5 2ln(S 2 T0)

Therefore, substituting this value in the general solution:

 ln(S 2 T  ) 5 2kt 2 c1

 ln(S 2 T  ) 5 2kt 1 ln(S 2 T0)

 ln(S 2 T  ) 2 ln(S 2 T0) 5 2kt

 ln (   S 2 T ______ 
S 2 T0

   )  5 2kt

   S 2 T ______ 
S 2 T0

   5 e2kt

  S 2 T 5 (S 2 T0)e2kt

  T 5 S 2 (S 2 T0)e2kt

This is an example of what is called ‘limited growth’. This is so because the 
maximum value that T can achieve is S. For example, if a can of soda is left 
in a room with constant temperature of 21°, then the temperature of the 
soda will increase to reach the room temperature!

In fact, since k . 0 and S is a constant, then

T 5 S 2 (S 2 T0)e2kt

  dT ___ 
dt

   5 k(S 2 T0)e2kt.

Also, since T0 , S, then

  dT ___ 
dt

   5 k(S 2 T0)e2kt . 0.

The temperature will always increase. As time passes, i.e.

  lim    
t  → 

  e2kt 5 0

⇒   lim    
t  → 

  T 5   lim    
t  → 

 (S 2 (S 2 T0)e2kt) 5 S

The graph shows how the temperature  
climbs up to 21° but does not exceed it.

O

T

t(0)

time t

21
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Example 55 

Solve the initial value problem:

  
dy

 ___ 
dx

   5   
y
 _____ 

x 1 1
  ; y (1) 5 4

Solution

This is a variables separable type. We will separate the variables and 
integrate.

   
dy

 ___ 
dx

   5   
y
 _____ 

x 1 1
  

   
dy

 __ y   5   dx _____ 
x 1 1

  

 ∫   dy
 __ y   5 ∫   dx _____ 

x 1 1
  

 ln|y | 5 ln|x 1 1| 1 c

  |y | 5 e  ln|x 11|1c 5 e  ln|x 11|e c 5 |x 1 1|e c

Now, since c is an arbitrary constant, we can replace e c with a constant C, 
and our solution becomes

|y | 5 C |x 1 1|.

Using the initial condition:

4 5 C|1 1 1| ⇒ C 5 2, and the particular solution

|y | 5 2|x 1 1|, that is,

y 5 62(x 1 1)

Example 56 

Solve the initial value problem:

  
dy

 __ 
dt

   5 e y 2 t   1 1 t 2 _____ cos y    ; y (0) 5 0

Solution

This problem needs some work to get it separated.

  
dy

 __ 
dt

   5 e ye2t   1 1 t 2 _____ cos y   

e2y cos ydy 5 e2t(1 1 t 2)dt

Both sides need integration by parts (left as an exercise for you).

∫e2y cos ydy 5 ∫e2t(1 1 t 2)dt

  1 _ 2   e2y(cos y 2 sin y) 5 e2t(t 2 1 2t 1 3) 1 c
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With initial conditions applied:

   1 _ 2   e2y(cos y 2 sin y) 5 e2t(t 2 1 2t 1 3) 1 c

   1 _ 2   e20(cos 0 2 sin 0) 5 e20(02 1 2(0) 1 3) 1 c

   1 _ 2   5 3 1 c ⇒ c 5   5 _ 2  

Therefore, our particular solution is:

  1 _ 2   e2y(cos y 2 sin y) 5 e2t(t 2 1 2t 1 3) 1   5 _ 2  

e2y(cos y 2 sin y) 5 2e2t(t 2 1 2t 1 3) 1 5

Notice here that our solution cannot be expressed explicitly. In many cases, 
solutions to differential equations are given in implicit form.

In questions 1–27, solve the given differential equation.

 1 x 23dy 5 4y	dx, y(0) 5 3  2   
dy

 ___ 
dx   5 xy, y(0) 5 1

 3 y9 2 xy2 5 0, y(1) 5 2  4 y9 2 y2 5 0, y(2) 5 1

 5   
dy

 ___ 
dx   2 e y 5 0, y(0) 5 1  6 y9e y 2 x 5 1

 7   
dy

 ___ 
dx   5 y22x 1 y22, y(0) 5 1  8 xdy 2 y2	dx 5 2dy, y(0) 5 1

 9 y2dy 2 x dx 5 dx 2 dy, y(0) 5 3 10 yy9 5 xy2 1 x, y(0) 5 0

11   
dy

 ___ 
dx  	5 y2x 1 x 12 y9 5   

xy 2 y
 ______ y 1 1

  , y(2) 5 1

13 e x  2 y dy 5 x	dx	 14 y9 5 xy2 2 x 2 y2 1 1

15 xy ln xy9 5 (y 1 1)2 16   
dy

 ___ 
dx   5   

1 1 2y2

 _______ y sin x  

17   
dy

 ___ 
dx   5 x   √

______

   
1 2 y2

 ______ 
1 2 x 2    , y(0) 5 0 18 y9(1 1 e x) 5 e x 2 y, y(1) 5 0

19 (y 1 1)dy 5 (x 2y 2 y)dx, y(3) 5 1 20 cos y	dx 1 (1 1 e2x  )sin y	dy 5 0, y(0) 5   p __ 4  

21 xy9 2 y 5 2x 2y, y(1) 5 1 22 xydx 1 e2x 2
(y2 2 1)dy 5 0, y(0) 5 1

23 (1 1 tan y)y9 5 x 2 1 1 24   
dy

 ___ 
dt

   5   tet
 ________ 

y  √
______

 y2 1 1  
  

25 y sec u dy 5 ey sin2 u du 26 x cos x 5 (2y 1 e 3y  )y9, y(0) 5 0

27   
dy

 ___ 
dx   5 e x 2 2x, y(0) 5 3

28 The temperature T of a kettle in a room satisfies the differential equation

  dT ___ 
dt

   5 m(T 2 21), where t is in minutes and m is a constant.

a) Solve the differential equation showing that T 5 Ce mt 1 21, where C is an 
arbitrary constant.

b) Given that T(0) 5 99 and T(15) 5 69, find
(i) the value of m and C
(ii) t when T 5 39.

Exercise 16.9
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  1	 The	graph	represents	the	function

f	:	x	↦	p	cos	x,	p		핅.

	 Find
a)  the	value	of	p
b)  the	area	of	the	shaded	region.

  2	 The	diagram	shows	part	of	the	graph	of	y	5		e		
		x __	
2
		
	.

a)  Find	the	coordinates	of	the	point	P,	
where	the	graph	meets	the	y-axis.	

The	shaded	region	between	the	graph	and	
the	x-axis,	bounded	by	x	5	0	and	
x	5	ln		2,	is	rotated	through	360°	about	
the	x-axis.
b)  Write	down	an	integral	that	

represents	the	volume	of	the	solid	
obtained.

c)  Show	that	this	volume	is	p cubic	units.	

3	 The	diagram	shows	part	of	the	graph	of	y	5			1	__	x 	.	The	area	of	the	shaded	region	is	2	
units.

Find	the	exact	value	of	a.

  4	 a)	 Find	the	equation	of	the	tangent	line	to	the	curve	y	5	ln		x	at	the	point	(e,	1),	and	
verify	that	the	origin	is	on	this	line.

b)  Show	that	(x	ln	x	–	x)9	5	ln		x.

c)  The	diagram	shows	the	region	enclosed	by	the	curve	y	5	ln		x,	the	tangent	line	in	
part	a),	and	the	line	y	5	0.

Use	the	result	of	part	b)	to	show	that	the	area	of	this	region	is			1	_	2			e	2	1.

Practice questions
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 5 The main runway at Concordville airport is 2  km long. An aeroplane, landing at 
Concordville, touches down at point T, and immediately starts to slow down. The point 
A is at the southern end of the runway. A marker is located at point P on the runway.

As the aeroplane slows down, its distance, s, from A, is given by

s � c � 100t – 4t 2

where t is the time in seconds after touchdown and c metres is the distance of T from A.
a) The aeroplane touches down 800  m from A (i.e. c � 800).

 (i)  Find the distance travelled by the aeroplane in the first 5 seconds after 
touchdown.

 (ii)  Write down an expression for the velocity of the aeroplane at time t seconds 
after touchdown, and hence find the velocity after 5 seconds.

The aeroplane passes the marker at P with a velocity of 36  m  s�1. Find
 (iii) how many seconds after touchdown it passes the marker
 (iv) the distance from P to A.

b) Show that if the aeroplane touches down before reaching the point P, it can stop 
before reaching the northern end, B, of the runway.

 6 a) Sketch the graph of y � � sin x � x, �3 � x � 3, on millimetre square paper, 
using a scale of 2  cm per unit on each axis.  
Label and number both axes and indicate clearly the approximate positions of the 
x-intercepts and the local maximum and minimum points.

b) Find the solution of the equation � sin x � x � 0, x � 0.

c) Find the indefinite integral

∫ (� sin x � x)  dx
and hence, or otherwise, calculate the area of the region enclosed by the graph, the  
x-axis and the line x � 1.

 7 The diagram shows the graph of the function y � 1 �   1 __ x  , 0 < x � 4. Find 
the exact value of the area of the shaded region.

A B
T

2 km

P

Not to scale

y

y � 1 �

x0

1
1

2

3

4

1 2 3 4

1
3

1
x
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  8	 Note: Radians are used throughout this question.
a)  (i)	 	Sketch	the	graph	of	y	5	x	2	cos	x,	for	0	<	x	<	2,	making	clear	the	approximate	

positions	of	the	positive	intercept,	the	maximum	point	and	the	endpoints.
	 (ii)	 	Write	down	the	approximate	coordinates	of	the	positive	x-intercept,	the	

maximum	point	and	the	endpoints.

b)	 Find	the	exact value	of	the	positive	x-intercept	for	0	<	x	<	2.

Let	R	be	the	region	in	the	first	quadrant	enclosed	by	the	graph	and	the	x-axis.
c)  (i)	 Shade	R	on	your	diagram.
	 (ii)	 Write	down	an	integral	that	represents	the	area	of	R.

d)	 Evaluate	the	integral	in	part	c) (ii),	either	by	using	a	graphic	display	calculator,	or	by	
using	the	following	information.

		 d	___	
d	x 		(x	2		sin		x	1	2x		cos		x	2	2		sin	x)	5	x	2		cos		x

  9	 Note: Radians are used throughout this question.
The	function	f	is	given	by

f	(x)	5	(sin	x)2	cos	x.

The	diagram	shows	part	of	the	graph	
of	y	5	f	(x).
The	point	A	is	a	maximum	point,	the	
point	B	lies	on	the	x-axis,	and	the	point	
C	is	a	point	of	inflexion.

a)  Give	the	period	of	f.

b)  From	consideration	of	the	graph	of	
y	5	f	(x),	find,	to an accuracy of 1 significant figure,	the	range	of	f.

c)  (i)	 Find	f	9(x).
  (ii)	 Hence,	show	that	at	the	point	A	cos	x	5			√

__

			1	_	3				.
  (iii)	 Find	the	exact	maximum	value.

d)	 Find	the	exact	value	of	the	x-coordinate	at	the	point	B.

e)  (i)	 Find	∫ f	(x)		dx.
	 (ii)	 Find	the	area	of	the	shaded	region	in	the	diagram.

f)	 Given	that	f		0(x)	5	9(cos	x)3	2	7	cos	x,	find	the	x-coordinate	at	the	point	C.

10	 Note: Radians are used throughout this question.
a)	 Draw	the	graph	of	y	5	p	1	x	cos	x,	0	<	x	<	5,	on	millimetre	square	paper,	using	

a	scale	of	2		cm	per	unit.	Make	clear
	 (i)	 the	integer	values	of	x	and	y	on	each	axis
	 (ii)	 the	approximate	positions	of	the	x-intercepts	and	the	turning	points.

b)	 Without the use of a calculator,	show	that	p	is	a	solution	of	the	equation
p	1	x	cos	x	5	0.

c)	 Find	another	solution	of	the	equation	p	1	x	cos	x	5	0	for	0	<	x	<	5,	giving	your	
answer	to	6	significant	figures.

d)	 Let	R	be	the	region	enclosed	by	the	graph	and	the	axes	for	0	<	x	< p.	Shade	R	
on	your	diagram,	and	write	down	an	integral	which	represents	the	area	of	R.

e)	 Evaluate	the	integral	in	part	d)	to	an	accuracy	of	6	significant	figures.	(If	you	

	 consider	it	necessary,	you	can	make	use	of	the	result			 d	___	
d	x 		(x	sin	x	1	cos	x)	5	x	cos	x.)

x

y

0

C

A

B
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11	 The	diagram	right	shows	the	graphs	of	
f	(x)	5	1	1	e	2x	and
g	(x)	5	10x	1	2,	0	<	x	<	1.5.

a)  (i)	 	Write	down	an	expression	for	
the	vertical	distance	p	between	
the	graphs	of	f	and	g.

	 (ii)	 	Given	that	p	has	a	maximum	
value	for	0	<	x	<	1.5,	find	
the	value	of	x	at	which	this	
occurs.

The	graph	of	y	5	f	(x)	only	is	shown	in	
the	diagram	right.	When	x	5	a,	y	5	5.
b)  (i)	 Find	f	21(x).
	 (ii)	 Hence,	show	that	a	5	ln	2.
c)	 The	region	shaded	in	the	

diagram	is	rotated	through	
360°	about	the	x-axis.	Write	
down	an	expression	for	the	

	 volume	obtained.

12	 The	area	of	the	enclosed	region	shown	in	the	diagram	is	defined	by

y	>	x	2	1	2,	y	<	ax	1	2,	where	a	.	0.

This	region	is	rotated	360°	about	the	x-axis	to	form	a	solid	of	revolution.	Find,	in	terms	
of	a,	the	volume	of	this	solid	of	revolution.

13	 Using	the	substitution	u	5			1	_	2			x	1	1,	or	otherwise,	find	the	integral	∫x   √
______

			1	_	2		x 1	1			dx.

14	 A	particle	moves	along	a	straight	line.	When	it	is	a	distance	s	from	a	fixed	point,	where	
s	.	1,	the	velocity	v	is	given	by	v	5			3s	1	2	______	

2s	2	1
		.	Find	the	acceleration	when	s	5	2.

15	 The	area	between	the	graph	of	y	5	e	x	and	the	x-axis	from	x	5	0	to	x	5	k	(k	.	0)	
is	rotated	through	360°	about	the	x-axis.	Find,	in	terms	of	k	and	e,	the	volume	of	the	
solid	generated.

16	 Find	the	real	number	k	.	1	for	which		∫ 
		1
		
k

					( 1	1			1	__	x	2			)	dx	5			3	__	
2
		.

y

x

p

f

g

0

4

8

12

16

0.5 1 1.5

y

xa0

4

8

5

12

16

0.5 1 1.5

xO

y

a

2
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17	 The	acceleration,	a	(t	)	m	s22,	of	a	fast	train	during	the	first	80	seconds	of	motion	is	given	by

a	(t	)	5	2			1	___	
20

			t	1	2

where	t	is	the	time	in	seconds.	If	the	train	starts	from	rest	at	t	5	0,	find	the	distance	
travelled	by	the	train	in	the	first	minute.

18	 In	the	diagram,	PTQ	is	an	arc	of	the	parabola	y	5	a	2	2	x	2,	where	a	is	a	positive	
constant,	and	PQRS	is	a	rectangle.	The	area	of	the	rectangle	PQRS	is	equal	to	the	area	
between	the	arc	PTQ	of	the	parabola	and	the	x-axis.

Find,	in	terms	of	a,	the	dimensions	of	the	rectangle.

19	 Consider	the	function	fk		(x)	5 { x	ln	x	2	kx, x	.	0
,	where	k		

0, x	5	0

a)	 Find	the	derivative	of	fk	(x),	x	.	0.
b)	 Find	the	interval	over	which	f	(x)	is	increasing.

The	graph	of	the	function	fk	(x)	is	shown	below.

c)  (i)	 Show	that	the	stationary	point	of	fk	(x)	is	at	x	5	e	k	2 1.
(ii)  One	x-intercept	is	at	(0,	0).	Find	the	coordinates	of	the	other	x-intercept.

d)	 Find	the	area	enclosed	by	the	curve	and	the	x-axis.
e)	 Find	the	equation	of	the	tangent	to	the	curve	at	A.
f)  Show	that	the	area	of	the	triangular	region	created	by	the	tangent	and	the	

coordinate	axes	is	twice	the	area	enclosed	by	the	curve	and	the	x-axis.
g)  Show	that	the	x-intercepts	of	fk	(x)	for	consecutive	values	of	k	form	a	geometric	

sequence.

20	 Solve	the	differential	equation			
d	y

 __	
dx  	5	1	1	y2	given	that	y	5	0	when	x	5	2.

x
Q

RS

T

P
O

y

y � a2 � x2

AO x

y
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21	 The	equation	of	motion	of	a	particle	with	mass	m,	subjected	to	a	force	kx	can	be	

	 written	as	kx	5	mv			dv	__	
dx  ,	where	x	is	the	displacement	and	v	is	the	velocity.	

	 When	x	5	0,	v	5	v0.	Find	v,	in	terms	of	v0,	k	and	m,	when	x	5	2.

22	 a)	 Sketch	and	label	the	graphs	of	f	(x)	5	e2x	2	and	g	(x)	5	e	x
	2
	2	1	for	0	<	x	<	1,	

and	shade	the	region	A	which	is	bounded	by	the	graphs	and	the	y-axis.

b)	 Let	the	x-coordinate	of	the	point	of	intersection	of	the	curves	y	5	g	(x)	and	
y	5	g		(x)	be	p.
Without	finding	the	value	of	p,	show	that	

		
p
	__	

2
			,	area	of	region	A	,	p.

c)	 Find	the	value	of	p	correct	to	four	decimal	places.

d)	 Express	the	area	of	region	A	as	a	definite	integral	and	calculate	its	value.

23	 Let	f	(x)	5	x	cos	3x.
a)	 Use	integration	by	parts	to	show	that

∫f	(x)dx	5			1	_	3			x	sin	3x	1			1	_	9			cos	3x	1	c.

b)	 Use	your	answer	to	part a)	to	calculate	the	exact	area	enclosed	by	f	(x)	and	the	
x-axis	in	each	of	the	following	cases.	Give your answers in terms of	p.

(i) 		p __	
6
			<	x	<			3p ___	

6
	 	

(ii) 		3p ___	
6
	 		<	x	<			5p ___	

6
	 	

(iii)			5p ___	
6
	 		<	x	<			7p ___	

6
	 	

c)	 Given	that	the	above	areas	are	the	first	three	terms	of	an	arithmetic	sequence,	find	
an	expression	for	the	total	area	enclosed	by	f	(x)	and	the	x-axis	for	

  p __	
6
			<	x	<			

(2n	1	1)	p
 _________	

6
	 	,	where	n		Z.	

Give your answers in terms of n and	p.

24	 A	particle	is	moving	along	a	straight	line	so	that	t	seconds	after	passing	through	a	fixed	
point	O	on	the	line	its	velocity	v	(t		)	m	s21	is	given	by

v		(t	)	5	t	sin	( 		p __	
3
			t	)	.

a)	 Find	the	values	of	t	for	which	v	(t		)	5	0,	given	that	0	<	t	<	6.

b)  (i)	 Write	down	a	mathematical	expression	for	the	total	distance	travelled	by	the	
particle	in	the	first	six	seconds	after	passing	through	O.

(ii)  Find	this	distance.

25	 A	particle	is	projected	along	a	straight-line	path.	After	t	seconds,	its	velocity	v	metres	
per	second	is	given	by	v	5			 1	_____	

2	1	t		2
		.

a)	 Find	the	distance	travelled	in	the	first	second.

b)	 Find	an	expression	for	the	acceleration	at	time	t.
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26	 The	diagram	below	shows	the	shaded	region	R	enclosed	by	the	graph	of	

	 y	5	2x  √
______

	1	1	x	2		,	the	x-axis,	and	the	vertical	line	x	5	k.

a)  Find			
d	y

 __	
dx  .

b)  Using	the	substitution	u	5	1	1	x	2	or	otherwise,	show	that

∫2x  √
______

	1	1	x	2			d	x	5			2	_	3			(1	1	x	2	)				
3
	_	2				1	c.

c)  Given	that	the	area	of	R	equals	1,	find	the	value	of	k.

27	 A	particle	moves	in	a	straight	line	with	velocity,	in	metres	per	second,	at	time	t	seconds,	
given	by

v	(t	)	5	6t	2	2	6t,	t	>	0.

Calculate	the	total	distance	travelled	by	the	particle	in	the	first	two	seconds	of	motion.

28	 A	particle	moves	in	a	straight	line.	Its	velocity	v	m	s21	after	t	seconds	is	given	by	

v	5		e	2		√
_
	t				sin	t.

Find	the	total	distance	travelled	in	the	time	interval	[0,	2p].

29	 The	temperature	T		°C	of	an	object	in	a	room,	after	t	minutes,	satisfies	the	differential	
equation

		dT	___	
dt	

			5	k	(T	2	22),	where	k	is	a	constant.

a)	 Solve	the	differential	equation	showing	that	T	5	Te	kt	1	22,	where	A	is	a	constant.
b)	 When	t	5	0,	T	5	100,	and	when	t	5	15,	T	5	70.

(i)	 Use	this	information	to	find	the	value	of	A	and	of	k.
(ii)  Hence,	find	the	value	of	t	when	T	5	40.

30	 Solve	the	differential	equation	x			
d	y

 __	
dx  	2	y2	5	1	given	that	y	5	0	when	x	5	2.	Give	your	

answer	in	the	form	y	5	f	(x).

31	 Use	the	substitution	u	5	x	1	2	to	find	∫    x	3
	_______	

(x	1	2)2
			dx.

32  a)	 On	the	same	axes	sketch	the	graphs	of	the	functions,	f	(x)	and	g	(x),	where

f	(x)	5	4	2	(1	2	x)2,	for	2	2	<	x	<	4,

g	(x)	5	ln	(x	1	3)	2	2,	for	2	3	<	x	<	5.

O k

R
x

y

y � 2x    1 � x2
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b)  (i)	 Write	down	the	equation	of	any	vertical	asymptotes.
(ii)	 State	the	x-intercept	and	y-intercept	of	g	(x).

c)	 Find	the	values	of	x	for	which	f	(x)	5	g	(x).
d)	 Let	A	be	the	region	where	f	(x)	>	g	(x)	and	x	>	0.

(i)  On	your	graph	shade	the	region	A.
(ii)  Write	down	an	integral	that	represents	the	area	of	A.
(iii) Evaluate	this	integral.

e)	 In	the	region	A	find	the	maximum	vertical	distance	between	f	(x)	and	g	(x).

33	 Consider	the	differential	equation			
d	y

 ___	
du

  	5			
y
 _______	

e	2u	1	1
		.

a)	 Use	the	substitution	x	5	eu	to	show	that

∫   
d	y __	y  	5	∫			 dx ________	x(x	2	1	1)

		.

b)	 Find	∫    dx ________	
x(x	2	1	1)

		.

c)  Hence,	find	y	in	terms	of	u,	if	y	5			√
__

	2			when	u	5	0.

Questions	1–11:	©	International	Baccalaureate	Organization
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24	 a)

	 	

W

W�

L�

L�

L

L

7
8

1
8

2
3

3
5

3
4

1
4

	 b)	 		47
	___	160			 c)	 		35

	__	47		

25	 a)	 		1	_	3			 b)	 		7	__	12			 c)	 		3	_	7		

26	 a)

	 	

Red

Yellow

Does not grow

Does not grow

Grows

Grows

0.4

0.9

0.1

0.8

0.2

0.6

	 b)	 (i)	 0.36	 (ii)	 0.84	 (iii)	 0.429

27	 a)	 		1	_	6			 b)	 		1	__	12			 c)	 		2	_	9		

28	 a)	 (i)	 		8	__	21			 (ii)	 		1	_	6			 (iii)	 no,	P(A		B)		P(A)P(B)

	 b)	 		10
	__	17			 c)	 		200

	___	399		
29  		1	_	3			 30  		4	_	5			 31  0.001	98	 32  		19

	__	30		

33  0.80	 34  		10
	__	19		  35  a)				13

	__	20				b)				11
	__	15		

36  		2	_	5		

37  a)	 (i)	 		5	___	
36

			 (ii)	 		25	___	
216

			 (iii)	
	  

1
6

5
6( )2n22

	 b)	 No	answer	required	–	proof
	 c)	 		5	__	11			 d)	 0.432
38  a)	 0.957	 b)	 0.301
39  		1	_	9		
40  a)	 0.25	 b)	 0.083
41  a)	 0.80	 b)	 0.56
42  a)	 0.732	 b)	 		11

	__	61		

43  a)	 		2	_	3			 b)	 		2	_	9				 c)	 			3	_	4		

44  a)	 		1	__	10			 b)	 proof

	 c)	 		11
	__	90			 d)	 		3	__	11		

45  		3	_	7		

Chapter 13
Exercise 13.1
  1  4	 2	 	 3x 2 	 3	 	 2x 	 4	 6

  5  0	 6	
	

5
2

	 7	 d.n.e.	(increases	without	bound)

  8 
	

1
8 	

9 
	

3
2

  10 
	

2
4

  11 
	

1
4

12  1	 13   3	 14 
	 

1
e

15 
	 

d
dx

log
b

x[ ] = 1
x lnb 	

16  As	
	 
x → a, g x( ) → + ∞

17  a)	 Horizontal:	
	 
y = 3;	vertical:		  x = 21

	 b)	 Horizontal:	
	 
y = 0;	vertical:		 x = 2

	 c)	 Horizontal:	
 
y = b ;	vertical:	 x = a

	 d)	 Horizontal:	
	 
y = 2;	vertical:		 x = ±3

	 e)	 Horizontal:	
	 
y = 0;	vertical:	

	 
x = 0, x = 5

	 f)	 Horizontal:	none;	vertical:		 x = 4

18 
	

1
3 	

19  4	

Exercise 13.2
  1 

	  
′f x( ) = 22x

	
  2 

	 
′g x( ) = 3x 2

  3 
	 

′h x( ) = 1
2 x 	

  4 
	  

′r x( ) = 2 2
x 3

  5  (i)	

	 	

x

y

�4

�5

�6

�3

�2

�1

1

0

2

3

�2�3 �1 1 2 3

	 (ii)	

	 	

x

y

�20

�15

�10

�5

5

0

10

15

20

25

�2�3 �1 1 2 3

	 (iii)	

	 	 x

y

10

20

30

40

�1 10 2 3 4 5

	 (iv)	

	 	

x

y

�1

0

1

2

3

�2�3 �1 2 41 3 5
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Answers

  6  a)	
	  

′y = 6x 2 4 	 b)	
	 
24

  7  a)	
	  

′y = 22x 26	 b)	 0

  8  a)	
	  

′y = 2 6
x 4 	 b)	

	 
26

  9  a)	
	  

′y = 5x 4 23x 2 21	 b)	 1
10  a)	

	  
′y = 2x 2 4 	 b)	 0

11  a)	
	  

′y = 2 2 1
x 2 + 9

x 4 	 b)	 10

12  a)	
	  

′y = 12 2
x 3 	 b)	 3

13 
	  
a = 25, b = 2

	
14 

	
0, 0( )

15 
	 

2, 8( ) 	and	 22,28( ) 	
16 

	 

5
2

,2 21
4( )

17 
	 
1,22( )

18  a)	 Between	A	and	B
	 b)	 Rate	of	change	is	positive	at	A,	B	and	F;
	 	 rate	of	change	is	negative	at	D	and	E;
	 	 rate	of	change	is	zero	at	C
	 c)	 Pair	B	and	D,	and	pair	E	and	F
19 

	 
a = 1, b = 5

	
20  	 a = 1 	 21 

	
3, 6( )

22  a)	 12.61	 b)	 12	 23 
	 

′f x( ) = 2ax + b

24  a)	 4.
–
6			degrees	Celsius	per	hour

	 b)	
	 

′C t( ) = 3 t

	 c)	
	 
t = 196

81
≈ 2.42 	hours

25–26 
	
Proof

27 
	 

1
2 x 	

28 
	  
2 1

x 2

29 

	  

5

32 x( )2 or	 5

x 23( )2













	

30 

	 

− 1

2 x + 2( )3

Exercise 13.3
  1 

	 
1,27( )	 2	

	 
2 3

2
, 8( ) 	 3	

	
3, 2( )

  4  a)	
	  

′y = 2x 25	 b)	 increasing	for	
	 
x > 5

2
	 c)	 decreasing	for	

	 
x < 5

2
  5  a)	

	  
′y = 26x 2 4	 b)	 increasing	for	

	  
x < 2 2

3
	 c)	 decreasing	for	

	  
x > 2 2

3
  6  a)	

	  
′y = x 2 21 	 b)	 increasing	for	

	  
x > 1, x < 21

	 c)	 decreasing	for		  21 < x < 1
  7  a)	

	  
′y = 4x 3 212x 2 	 b)	 increasing	for		 x > 3

	 c)	 decreasing	for	
	 
x < 0, 0 < x < 3

  8  a)	
	 

3,2130( ) , 24, 213( )
	 b)	 	

	 
3,2130( )	minimum	because	2nd	derivative	is	positive	at	

	 x = 3
	 	 	

	 
24, 213( )	maximum	because	2nd	derivative	is	negative	at	

	  x = 24

	 c)	

	 	 	 	 	
	 					

x

y

�100

�150

�50
0

100

200

50

150

250

�2�3�4�5�6�7 �1 2 4

(3, �130)

(�4, 213)

1 3 5 6

  9	 a)	
	 

0,25( )
	 b)	 	Stationary	point	is	neither	a	maximum	nor	minimum	

because	1st	derivative	is	always	positive.
	 c)	

	 	

x

y

�4

�6

�8

�10

�12

�2
0

4

2

�2�3�4 �1 2 4

(0, �5)

1 3

10  a)	
	
1, 4( ) , 3, 0( )

	 b)	 	
	
1, 4( ) 	maximum	because	2nd	derivative	is	negative	at	

	 x = 1
	 	 	

	
3, 0( ) 	minimum	because	2nd	derivative	is	positive	at	

	 x = 3
	 c)	

	

	 	

x

y

�2

�3

�4

�5

�6

�1
0

2

3

4

5

6

7

8

1

�1�2 2 4

(3, 0)

(1, 4)

51 3

11  a)	
	 
21, 4( ) , 0, 6( ) , 5

2
,2 279

16( )
	 b)	 	

	 
21, 4( ) 	minimum	because	2nd	derivative	is	positive	at	

	  x = 21
	 	 	

	
0, 6( ) 	maximum	because	2nd	derivative	is	negative	at	

	 x = 0
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5
2

,2 279
16( ) 	minimum	because	2nd	derivative	is	positive	

at	

	 	
	 
x = 5

2
	 c)	

	 	

x

y

�10

�15

�20

�5
0

10

15

5

�1�2 2 41 3

(0, 6)

(�1, 4)

5
2(            ), �279

16

12  a)	
	 
21,14( ) , 7

3
,2122

27( )
	 b)	 	

	 
21,14( )	maximum	because	2nd	derivative	is	negative	at	

	  x = 21

	 	 	
	 

7
3

,2122
27( ) 	minimum	because	2nd	derivative	is	positive	at	

	 	
	 
x = 7

3
	 c)	

	 	

x

y

�5

0

5

10

15

�4 �3 �2 �1 1 2 3 4 5

7
3(            ), �122

27

(�1, 14)

13  a)	
	 

1
4

,2 1
4( )

	 b)	
	 

1
4

,2 1
4( ) 	minimum	because	2nd	derivative	is	positive	at	

	 	
	 
x = 1

4
	 c)	

	 	

x

y

�1

0

1

2

�1 1 2 3
1
4(          ),� 1

4

14  a)	
	  
v t( ) = 3t 2 28t + 1; a t( ) = 6t 28

	 b)	

	 	

t

s

�4

�5

�6

�7

�3

�2

�1

1

0�1 1 2 3

Displacement function:
s(t) � t 3 � 4t 2 � t

	 	

t

v

�6

�4

�2

2

0

4

6

8

10

12

�1 1 2 3

Velocity function:
v(t) � 3t 2 � 8t  � 1

	 	

t

a

�5

�10

�15

0

5

10

�1 1 2 3

Acceleration function:
a(t) � 6t  � 8

	 c)	 	 t ≈ 0.131,	displacement	≈ 0.0646
	 d)	 	 t = 1.3,	displacement

	 
= 24.3

	 e)	 	Object	moves	right	at	a	decreasing	velocity	then	turns	left	
with	increasing	velocity	then	slowing	down	and	turning	
right	with	increasing	velocity.

15  Relative	maximum	at	
	 
22,16( );	relative	minimum	at	

	
2,16( ) ;	

inflexion	point	at	
	

0, 0( )
16  Absolute	minima	at	

	 
22,24( ) 	and	 2,24( );	relative	maximum	

	 at	
	

0, 0( ) ;	inflexion	points	at	
	 

2 2 3
3

,2 20
9





 	and	 2 3

3
,2 20

9






17  Relative	maximum	at	
	 
22,24( );	relative	minimum	at	

	
2, 4( );	

no	inflexion	points

18  Relative	minimum	at	
	 

2 43

2
, 3 23

2




 ;	inflexion	point	at	

	
1, 0( )

19  Relative	minimum	at	
	 
21,22( );	relative	maximum	at	

	
1, 2( ) ;	

	 inflexion	points	at	
	 

2 2
2

,2 7 2
8





 , 0, 0( ) 	and	 2

2
, 7 2

8






20  Relative	minimum	at	
	 
21, 0( );	absolute	minimum	at	

	 
2,227( );	relative	maximum	at	

	
0,5( ) ;	inflexion	points	at	

	 
1.22,213.4( ) 	and	 20.549, 2.32( )

21  a)	
	  
v 0( ) = 27	m	s21, a 0( ) = 266 m	s22
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Answers

	 b)	
	  
v 3( ) = 45	m	s21, a 3( ) = 78 m	s22

	 c)	
	 
t = 1

2
	and	t = 2 1

4
;	where	displacement	has	a	relative	

	 	 maximum	or	minimum

	 d)	
	 
t = 11

8
= 1.375 ;	where	acceleration	is	zero

22  	 x ≈ 5.77 	tonnes;		 D ≈ 34.6 	($34	600);	this	cost	is	a	minimum	
because	cost	decreases	to	this	value	then	increases

23 
	  
a 23, b = 4, c = 22

24  Relative	maximum	at	
	 
22,215

4( ) ,	stationary	inflexion	point	

	 at	
	
1, 3( ) 	

	
	 
f x( ) → x 	as	x → ±∞

	

x

y

y � x

�8

�6

�4

�2

2

0

4

6

�4�5 �3 �2 �1 1 2 3 4 5

25	 a)

	 	

x0

y

	 b)

	 	

x

y
(b)

0

	 c)

	 	

x

y
(c)

0

	 d)

	 	

x

y
(d)

0

	 e)

	

x

y
(e)

26  a)	 Increasing	on		 1 < x < 5;	decreasing	on	
	 
x < 1, x > 5

	 b)	 Minimum	at		 x = 1;	maximum	at		 x = 5
27  a)	 	Increasing	on	

	  
0  x < 1, 3 < x < 5;	decreasing	on	

	 
1 < x < 3, x > 5

	 b)	 Minimum	at		 x = 3;	maximum	at		 x = 1	and	x = 5
28  	 x ≈ 0.5	and	x ≈ 7.5
29 

	
x

y

0

4

8

�2�4 2 4

30  a)	 Right		 1 < t < 4;	left	
	 
t < 1, t > 4

	 b)	
	  
v

0
= 224, a

0
= 30

	 c)	
	 
d

max
= 16	at	t = 4, v

max
= 13.5	at	t = 2.5

	 d)	 Velocity	is	maximum	at		 t = 2.5
31  a)	 Maximum	at		 x ≈ 6.50,	minimum	at	

	  
x ≈ 20.215

	 b)	 Maximum	is	
	 
7π
4

+ 1,	minimum	is	
	  
π
4

21

Exercise 13.4
  1  a)	

	  
y = 24x 28

	
	 b)	

	 
y = 4

27
	 c)	

	  
y = 2x + 1

	
	 d)	

	  
y = 22x + 4

  2  a)	
	 
y = 1

4
x + 19

4 	
	 b)	

	  
x = 2 2

3
	 c)	

	 
y = x + 1

	
	 d)	

	 
y = 1

2
x + 11

4

  3  At	
	 

0, 0( ) : y = 2x ;	at	
	  
1, 0( ) : y = 2x + 1;	at	

	  
2, 0( ) : y = 2x 2 4

  4 
	  
y = 22x

  5  a)	 	 x = 1
	 b)	 For	

	  
y = x 2 26x + 20,	eq.	of	tangent	is	

	  
y = 24x + 19

	 	 For	
	  
y = x 3 23x 2 2 x ,	eq.	of	tangent	is	

	  
y = 24x + 1

  6  Normal:	
	  
y = 1

2
x 2 7

2
;	intersection	pt:	

	 
2 1

2
, 2 15

4( )
  7  Eq.	of	tangent:	

	  
y = 23x + 3;	eq.	of	normal:	

	  
y = 1

3
x 2 1

3
  8 

	  
a = 4, b = 27
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  9  a)	
	 
y = 2x + 5

2
	 b)	

	

2
3

, 41
27( )

10  Eq.	of	tangent:	
	  
y = 2 3

4
x + 1;	eq.	of	normal:	

	  
y = 4

3
x 2 22

3
11 

	

x

y

0

10

5

20

30

15

–10

–15

–5

25

35
y = 12x + 4

y = 9x + 5

y = (1 + x)2 (5 � x)

�2�4 2 4 6

12 
	  
y = 11x 2 25	and	y = 2x 21

13 
	  
y = 2 2 2 2( ) x 	and	y = 2 2 2 + 2( ) x

14  a)	
	 
y = 1

12
x + 4

3
	 b)	 	 93 ≈ 2.08

15 
	  
y = 2 1

2 a3
x + 3

2 a
16 

	  
x

Q
= 22x

P
, y

Q
= 28y

P

Practice questions
  1  a)	 Gradient	= 3 	 	 b)	

	  
y = 3x 2 9

4
	 c)	

	

	 	

x

y

�4

�2

2

0

4

6

8

�3 �2 �1 1 2 3 4

3
2(        ), 9

4

	 d)	
	  
Q 3

4
, 0( ) , R 0,2 9

4( )
	

	 f)	
	  
y = 2ax 2a2

	

	 g)	
	  
T a

2
, 0( ) , U 0,2a2( )

	 h)	 x-coord.:	
	 

a + 0
2

= a
2

;	y-coord.:	
	  

a2 2a2

2
= 0

  2 
	 
A = 1, B = 2, C = 1

  3  a)	 	  4x 215x 4

	 b)	
	  
2 1

x 2

  4  a)	 		  x = 2	or	 2 2;	
	  

′f 1( ) = 26 < 0	(decreasing)	and	

	 	
	 

′f 3( ) = 10
9

> 0 	(increasing)	
	 
∴ f 2( ) 	is	a	turning	point

	 b)	 	vertical	asymptote:		 x = 0	(y-axis);	oblique	asymptote:	
	 
y = 2x

  5 
	

1
2

, 3( )
  6  	 a = 1
  7  a)	

	  
y = 5x 27

	 b)	
	  
y = 21

5
x + 17

5
  8  a)	 	 x = 1
	 b)	

	  
23 < x < 22, 1 < x < 3

	 c)	
	  
x = 2 1

2
	 d)	

	 	

x

y

�1

�2

�3

0

11
2

2

 maximum at x � 1

 minimum at x � �2

     inflexion point at
x � �

�3 �2 �1 1 2 3

  9 
	 
b = 2, c = 3

10

function diagram

f 1 d

f 2 e

f 3 b

f 4 a

11  a)	
	 
2
π 	

	 b)	
	

2
2 	

	 c)	 	 x ≈ 0.881

12  a)	 (i)	 	 x = 0 	 (ii)	
	 
y = 3

	 b)	
	 

dy
dx

= 2
x 2

	 c)	 Increasing	for	all	x,	except		 x = 0

	 d)	 No	stationary	points	because	
	 

dy
dx

= 2
x 2 ≠ 0

13  Maximum	at	
	 
21,1( ),	minimum	at	

	
0, 0( ),	maximum	at	

	
1,1( )

14 
	 
a = 8

3
, b = 16

5
15  a)	 	 10	m	s21	 b)	 10	sec	 c)	 50	metres
16  a)	 	  v = 14 29.8t
	 b)	 	 t ≈ 1.43 	sec
	 c)	 Velocity	= 0,	acceleration	 = 29.8	m	s22

17 
	 
24,120( )

18  a)	
 	  
y = 2 3( ) x + π 3

3
2 2

	 b)	
 	  
y = 3

3




 x 2 π 3

9
2 2

19  a)	
	  
h = 27 2r 2

r
;	
 	  
V = πr 27 2r 2( )

	 b)	 	 r = 3
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Answers

20 
	  
a = 22, b = 8, c = 10

21  a)	
	  
y = 27x + 1

	 b)	
	 
y = x

7
+ 107

7
22  a)	 Absolute	minimum	at	

	 

3
4

,2 27
256( )

	 b)	 Domain:	
 x ∈,	range:	

	  
y  2 27

256

	 c)	 Inflexion	points	at	
	 

0, 0( ) 	and	 1
2

,2 1
16( )

	 d)	

	 	

x

y

0

1

�1 1 2

inflexion 
points

minimum

23  a)	
	 
25

3
	 b)	

	

1
4

	 c)	 3	 d)	 	 

1
2 x + 2

24  a)	
	  

′f x( ) = 3x 2 4
2 x

	 b)	
	  

′f x( ) = 3x 2 23cos x

	 c)	
	  

′f x( ) = 2 1
x 2 + 1

2

	 d)	
	  

′f x( ) = 2 91
3x14

25  3	solutions:	
	 

11
2

, 1105
8( ) , 2,215( ) , 	and	 22,5( )

26 
	
17
2

27 
	 

2, 2
3( ) , 22,2 2

3( )
28 

	 
21,22( )

30 
	

2, 20( ) , 4,16( )
31  a)	 particle	does	not	change	direction	for	0	<	t	<	2π
  b)	 v	=	1	+	cost	>	0	for	0	<	t	<	2π
	 c)	

	  t = 0, π, 2π
	 d)	 Maximum	value	of	s	is	 2π

	 	
x

y

0 4 62

2

4

6

32 
	  
a = 1

4
, b = 3

4
, c = 26, d = 2 5

2
; y-coord.	is	 2 19

2

33  Absolute	minimum	points	at	
	 
22,21

8( ) 	and	 2,21
8( )

34  a)	
	  
y = 2x + 2

	
	 	 b)	

 	  
y = 2x + π

2
35  b)	

	 
y = 2x, 1, 2( )

36  a)	 	  v = 50 2 20t 	 	 	 b)	 	 s = 1062.5 	m

37 

	

x

y

a b
inflexion 

points

minimum

maximum

y = f '(x)

y = f (x)

Chapter 14
Exercise 14.1
1	 a)	 	( 		5	_	2		,	22,	0	)	

	 b)	 	( 3,	2	√
__

	3		,	0	)	

	 c)	 (21,	2,	22)

	 d)	 (a,	24a,	2a)

  2	 a)	 Q ( 2	  1	_	2		,	23,	2	)	

	 b)	 P		( 		5	_	2		,	22,	0	)	

	 c)	 Q(0,	24a,	3a)

  3	 a)	 (x,	y,	z)	5 (t,	t,	5	2	5t),	or	(x,	y,	z)	5 (1	1 t,	1	1 t,	2	5t)

	 b)	 (x,	y,	z)	5	(21	1 4t,	5t,	1	2	3t)

	 c)	 (x,	y,	z)	5	(2	2	4t,	3	2	6t,	4	1 t)

  4	 a)	 C(7,	28,	21)

	 b)	 C(21,			11
	__	2		,			29

	__	3		)

	 c)	 C(2	2 a,	4	2	2a,	2b 2 2)

  5	 a)	 (2	  1	_	3		,	1,			1	_	3		)

	 b)	 (1,	2	  5	_	3		,	21)

	 c)	 	( 		a	1	b	1	c ________	
3

	 	,			2a	1	2b	1	2c ___________	
3

	 	,	a	1	b	1	c ) 

	 6	 a)	 D (21,	1,	26)
	 b)	 D ( 22	√

__

	2		,	2	√
__

	3		,	1	2 4	√
__

	5			)	
	 c)	 D  (   5	_	2		,	2	  2	_	3		,	24	)	
  7	 m	5	5,	n	5	1

  8	 a)	 v	5			2	_	3			i	1			2	_	3			j	2			1	_	3			k

	 b)	 v	5			 3	____	
	√

___

	14			
		i	2			 2	____	

	√
___

	14			
		j	1			 1	____	

	√
___

	14		
			k

	 c)	 v	5			2	_	3			i	2			1	_	3			j	2			2	_	3			k

  9	 a)	 		2	_	3			(2i	1 2j	2 k)

	 b)	 		 2	____	
	√

___

	14		
			(6i	2	4j	+	2k)

	 c)	 		5	__	
3

			(2i	2	j	2	2k)	

10	 a)	 |u	1	v|	5		√
___

	29		
	 b)	 |u|	1	|v|	5		√

___

	14			1		√
__

	5		
	 c)	 |23u|	1	|3v|	5	3	√

___

	14			1	3	√
__

	5		

	 d)	 		1	___	
|u|

   u	5			 i ____	
	√

___

	14		
			1			

3j
 ____	

	√
___

	14		
			2			 2k ____	

	√
___

	14		
		

	 e)	 |		1	___	
|u|

   u|	5	1

11	 a)	 (3,	4,	25)	 b)	 (0,	22,	5)
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12	 a)	 (1,	2	  4	_	3		)	 b)	 	√
__

	6		(4i	1	2j	2	2k)	 c)	 2	  2	_	3			i	1			8	_	3			j	2	2k

13	 0	 14 
	
± 14

14 	
15  None	 16  None

17  a)	 	a	=	(8,	0,	0),	b	=	(8,	8,	0), c	=	(0,	8,	0),	d	=	(0,	0,	8),	
	 	 e	=	(8,	0,	8),	f	=	(8,	8,	8)
	 b)	 l	=	(8,	4,	8),	m	=	(4,	8,	8),	n	=	(8,	8,	4)
	 c)	 proof
18  a)	 c	=	(8,	0,	12),	d	=	(0,	10,	12)
	 b)	 f	=	(4,	5,	0),	g	=	(4,	5,	12)
	 c)	

	  
AG
 

= 24, 5, 12( ) = FD
 

19 
	
± 6

3
20 

	  
a, b, µ( ) = 31

7
,2 15

7
, 6
7( )

	
21   	 a, b, µ( ) = 2,21, 3( )

22  Not	possible	 23  Rectangle

24 
	  
T

1
= 125 3 21( ) N;T

2
= 175 3 2 2 6

2




 N

25 
	 
T

1
= 150 N;T

2
= 150 3 N

Exercise 14.2
  1	 a)	 216,	117.65°	 b)	 220,	64.68°	 c)	 13,	40.24°
	 d)	 215,	151.74°	 e)	 6,	60°	 f)	 26,	120°
  2	 a)	 Orthogonal	 b)	 acute	 c)	 orthogonal

  3  a)	 v    u 5	0	5	wu  b)  		 3	____	
	√

___

	13		
		 i	1			 2	____	

	√
___

	13		
			j,			23	____	

	√
___

	13		
			i	2			 2	____	

	√
___

	13		
			j

  4	 a)	 (i)	cos	a	5			 2	____	
	√

___

	14		
		,	cos	b	5			23	____	

	√
___

	14		
		,	cos	g	5			 1	____	

	√
___

	14		
		

	 	 (ii)	cos2	a	1	cos2	b	1	cos2	g	5			2
2
	___	

14
			1			

(23)2

	_____	
14

	 		1			1
2
	___	

14
			5	1

	 	 (iii)	a	<	58°,	b	<	143°,	g	<	74°

	 b)	 (i)	cos	a	5			 1	___	
	√

__

	6		
		,	cos	b	5			22	___	

	√
__

	6		
		,	cos	g	5			 1	___	

	√
__

	6		
		

	 	 (ii)	cos2	a	1	cos2	b	1	cos2	g	5 
	

12

6
+ 22

6
+ 12

6
5	1

	 	 (iii)	a	<	66°,	b	<	145°,	g	<	66°

	 c)	 (i)	cos	a	5			 3	____	
	√

___

	14		
		,	cos	b	5			22	____	

	√
___

	14		
		,	cos g	5			 1	____	

	√
___

	14		
		

	 	 (ii)	cos2	a	1	cos2	b	1	cos2	g	5 
	 

32

14
+ (22)2

14
+ 12

14
	 	 	5	1
	 	 (iii)	a	<	37°,	b	<	122°,	g	<	74°

	 d)	 (i)	cos	a	5			3	__	5		,	cos	b	5	0,	cos	g	5			24	___	5	 	

	 	 (ii)	cos2	a	1	cos2	b	1	cos2	g	5
	

32

25
+ 02

25
+ 42

25
5	1

	 (iii)	a	<	53°,	b	<	90°,	g	<	143°

  5 

	 

1
2

2
2

2 1
2























	

  6 

	

3 2
2

3 2
2
0





















  7	 a)	 m	5	2	  9	_	8			 b)	 m	5	1	or	2	  1	_	4		
  8	 m	5	214
  9	 a)	 127°	 b)	 63°	 c)	 73°
10	 a)	 m 5 		1	_	3			 b)	 m 5 2	  1	_	4		

11	 mA:	r	5	(4,	22,	21)	1	m(21,	0,			3	_	2		);	

	 mB:	r	5	(3,	25,	21)	1	n(		1	_	2		,			9	_	2		,			3	_	2		)

	 mC:	r	5	(3,	1,	2)	1	k(		1	_	2		,	2	  9	_	2		,	23);	centroid	(		10
	__	3		,	22,	0)

12	 90,	90,	82,	74,	60,	54,	53,	52,	47,	43,	38,	37

13	 68.22
14	 103.3°,	133.5°,	46.5°
15	 0
16	 k	5	2
17  k	=	0	or	k	=	4
18	 x 5 220,	y	5 214
19	 x 5 5

20	 117°,			
	___

	
›
	AC 	5		( 	0	

	
	6			

3
		)		,	33°

21  a)	 b =	2			1	_	2			 	 	 b)	 b	=	0	or	b	=			1	_	2		
	 c)	 b	=			5	_	2			or	b	=	3	 	 d)	 b	=	±4
22	 a)	 b	5 2	  1	_	2			 	 	 b)	 b	5			1	_	2		

23	 (2140.8,	140.8,	18)	 24  t	=	2
25  t	=	2			1	_	2			 26  t	=	0	or	t	=			1	_	2		

27  90°	or	
	 
cos21 2

6( )
	

28  Proof

29  m =			7	_	4		,	n	=	2			1	_	4			 30  Proof

31 
 	 
π
3

,2 2π
3 	

32 
	 
cos21 ± 3

3






33  π 2	a,	π	2	b,	π	2	y	 34  k(8i	+	j	2	10k)

Exercise 14.3
  1  a)	 k	–	j	 b)	 same
  2  a)	 i	–	k	 b)	 same
  3  a)	 j	–	i	 b)	 same
  4  Proof	   5  (13,	0,	13)	   6   6i	2	8j	2	8k 

  7 

	 

25

21

27















	

  8  i	+	j	2	3k

  9  a)	 	  22m2 + 9m 211	 b)	 	  22m2 + 9m 211
	 c)	 	  22m2 + 9m 211

10  a)	 (240,	2115,	30)	 b)	 (2150,	60,	0)	
	 c)	 (280,	2160,	2640)
	 d)	 (80,	160,	640)	 e)	 (240,	2115,	30)
	 f)	 (2150,	60,	0)

11 

	 

1774
1774

19

33

218















	

12 

	

6
6

2

1

1















	

13  	 209

14  	 139 	 15  	2 43 	 16  Proof

17  m	=	1	or	m	=			11
	__	4			 18 

	

374
2 	

19  	5 29

20  128	 21  21	 22  1	 23  78
24  63	 25  No	 26  Yes	 27  22,			6	_	5		
28  Not	possible

29  a)	 49	 b)	 	7 5 	 c)	
	

7 5
5

	 d)	
	 
cos21 7 10

30






30  a)	
	

49
3

,	V(tetrahedron)	=	
	

1
3

V(parallelepiped)										b)			4	__	
3

		

31  45°	 32  Proof	 33  Proof

34  a)	
	

564
29

	 b)	
	

6 5
5

	 c)	
	

3
2

35  2(u	3 v)	 36  23(u 3 v)	 37  (mp	+	nq)(u	3 v)

38  a)	
	 
o = 1

2
ab( )2 + ac( )2 + bc( )2( )

	 b)	
	 
a = 1

2
ab;b = 1

2
bc;c = 1

2
ac

	 c)	 result	obvious
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Answers

39 

	  

5t 2
1
3

2t + 2
3

3t





















	

40  Not	possible

Exercise 14.4

  1	 a)	 r	5	
21
0
2

	1t	
1
5

24

	
x
y
z

	5	
21	1	t

5t
2	2	4t

	 b)	 r	5	
3

21
2

	1t	
2
5

21

	
x
y
z

	5	
3	1	2t

21	1	5t
2	2	t

	 c)	 r	5	
1

22
6

	1t	
3
5

211

	
x
y
z

	5	
1	1	3t

22	1	5t
6	2	11t

  2	 a)	 r	5	
21
4
2

	1t	
8
1

22

	 b)	 r	5	
4
2

23

	1t	
24
24
4

	 c)	 r	5	
1
3

23

	1t	
4

22
5

  3	 a)	 r	5	
3

22
	1t	

2
3

	 b)	 r	5	
0

22
	1t	

5
2

  4	 2x	1	3y	5	7
  5	 r	5	2i	2	3j	1	(4i	2	3j)
  6	 r	5	(22,	1,	4)	1	t(3,	24,	7)
  7	 a)	 (1,	21,	2)	 b)	 (217,	21,	1)
	 c)	 No	 d)	 No

  8	 a)	 r	5	(2,	21)	1	t (1,	3)	
x
y 	5	 2	1	t

21	1	3t

	 b)	 r	5	(2,	21)	1	t (23,	7)	
x
y 	5	 2	2	3t

21	1	7t   

	 c)	 r 5 (2,	21) 1 t (7,	3)	
x
y 	5	 2	1	7t

21	1	3t

	 d)	 r	5	(0,	2)	1	t (2,	24)	
x
y 	5	

2t
2	2	4t

  9	 a)	 t	5			3	_	2			 b)	 no	 c)	 m	5			7	_	2		
10	 a)	 (i)	 (3,	24)	 (ii)	 (7,	24)	 (iii)	 25
	 b)	 (i)	 (23,	1)	 (ii)	 (5,	212)	 (iii)	 13
	 c)	 (i)	 (5,	22)	 (ii)	 (24,	27)	 (iii)	 25

11	 a)	 (296,	128)	 b)	 	( 		2040
	___	13	 	,	2			850

	___	13			)	
12	 a)	 (24,	18)
	 b)	 r	5	(3,	2)	1	t (24,	18)
	 c)	 In	10	minutes
13	 a)	 a	5	23,	b	5	25

	 b)	 2   √
___

	21			____	
6

	 	

	 c)	 		
	√

___

	15		
	____	

6
	 	,			

	√
___

	35		
	____	

2
	 	

14	 a)	 146.8°	 b)	 3.87
	 c)	 (i)	 L1:	r	5	(2,	21,	0)	1	t (0,	1,	2);	L 2:	r	5	(21,	1,	1)	

	 	 							1	t  (1,	23,	22)

15	 a)	 (x,	y,	z)	5	(1	1	t,	3	2	2t,	217	1	5t)
	 b)	 (4,	23,	22)

16  a)	
	   
r = p

m
, 0





 + t n,2m( )

	 b)	 (i)	
	  
bx 2ay = bx

0
2ay

0 	
(ii)		slope	=	

 

b
a

17  (i)	 r	=	(t, t, 3t),	0	<	t	<	1
	 (ii)	 r	=	(2t	2	1,	t, 1	2	3t),	0	<	t	<	1
	 (iii)	 r =	(1	2	t,	3t,	t	2	1),	0	<	t	<	1
18  r	=	(2j	+	3k)	+	2t k

 	 

x = 0

y = 2

z = 3 + 2t







19  r =	(i	+	2j 2 k)	+	t (2i	2	3j	+	k)

	 	  

1 + 2t

2 23t

21 + t







20  r	=	t(x 0	i	+	y 0	j	+	z 0	k)

	

	 

tx
0

ty
0

tz
0









21  a)	 r =	(3i	+	2j 2 3k)	+	tj

	 					  

3

2 + t

23






	 b)	 r =	(3i	+	2j 2 3k)	+	ti	

	 				

	  

3 + t

2

23







22 
	  

x 2 x
0

x
0

=
y 2 y

0

y
0

=
z 2z

0

z
0 	

23  Intersect	at	(1,	3,	1)
24  Parallel	 25  Skew	lines
26  Skew	lines	 27  Parallel
28  Skew	lines	 29  (4,	24,	8)

30 
	

16
11

, 35
11

, 13
11( )

								
31  

	 

17
11

,2 7
11

, 72
11( )        32  

	 

43
11

, 58
11

,2 1
11( )

Exercise 14.5
  1  B	and	C
  2  A

  3  	
2

24
3

	
x
y
z

	=	26;	2x	2	4y	+	3z	2	26	=	0

  4  	
2
0
3

	
x
y
z

	=	23;	2x	+	3z	+	3	=	0

  5  	
0
0
3

	
x
y
z

	=	3;	3z	2	3	=	0;	r = 	
0
3
1

	+	t	
2

21
0

	+	s	
1
1
0

	

  6  	
5
1

–2
	

x
y
z

	=	5;	5x	+	y	2	2z	2	5	=	0

  7  	
0
1

22

	
x
y
z

	=	22;	y	2	2z	+	2	=	0
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  8  	
1

26
2

	
x
y
z

	=	23;	r	=	
3

22
4

	+		
2
1
2

	+	m	
2
0

21

  9  	
22
2
1

	
x
y
z

	=	21;	22x	+	2y	+	z	=	21

10  	
18
23
211

		
x
y
z

	=	5;	18x	2	3y	2	11z		=	5

11  	
p
q
r

	
x
y
z

	=	p 2	+	q 2	+	r 2;	px	+	qy	+	rz	=	p 2	+	q 2	+	r 2

12  4x	2	2y	+	7z	=	14;	
4

22
7

	
x
y
z

	=	14;	

	 r	=	
1
2
2

	+	m	
2

23
22

	+	n	
4
1

22

	

13  8x	+	17y	2	5z	+	8	=	0;	
8

17
25

	
x
y
z

	=	28;	

	 r	=	
2

22
22

	+	s	
1
1
5

	+	t	
23
2
2

	

14  	
1

21
0

	
x
y
z

	=	3;	x	2	y	=	3

15  	
30
1

223

			
x
y
z

	=	286;	30x	+	y	2	23z	+	86	=	0

16  	
1
0

21

	
x
y
z

	=	1;	x	2	z	=	1;	r	=	
1
1
0

	+	m	
1
0
1

	+	n	
1

21
1

	

Note:	All	answers	for	17222	are	to	the	nearest	degree.
17  64°	 18  90°	 19  45°	 20  50°
21  24°	 22  55°	 23  (3,	6,	210)	 24  (2,	22,	6)
25  No	intersection	 26  Plane	contains	line

27  r	=	
10
27
0

	+	t	
0

21
1

		 28  r	=	
3
1
0

	+	t	
0
1
1

	

29  No	intersection

30  r	=	 			+	t	
0

21
1

		 31 
1

21
1

	
x
y
z

	=	0	

32 
	 
x + 6y + z = 16

	
33  	( 		31	___	

21
		,			37	___	

21
		,			85	___	

21
			)	

34 
10
1

28

	
x
y
z

		=	232;	10x	+	y	2	8z	+	32	=	0

35 
4

23
2

	
x
y
z

		=	5;	4x	2	3y	+	2z	2	5	=	0

36  (BC)x	+	(AC)y	+	(AB)z	= ABC

37  r	=	
4

23
21

	+	r	
2

23
4

	+	s	
4
0

23

		

38  r	=	
2
3
0

	+	m	
2

23
4

	+	n	
1

22
1

	

Practice questions
  1	 a)	 	

	___
	
›
	OD 	2		

	___
	
›
	OC 	 b)	 		1	_	2				( 	

	___
	
›
	OD 	2		

	___
	
›
	OC  ) 	 c)	 		1	_	2				( 	

	___
	
›
	OD 	1		

	___
	
›
	OC  ) 

  2	 a)	 5i	1	12j	 b)	 10i	1	24j

  3	 a)	 |		
	___

	
›
	OA  |	5	|		

	___
	
›
	OB  |	5	|		

	___
	
›
	OC  |	5	6

	 b)	 		
	___

	
›
	AC   5  (   21	         

 √
___

 11	 
   ) 	 c)	 		 1	____	

	√
___

	12		
			 d)	 6	√

___

	11		

  4	 a)	 (10,	5)	 b)	 (23,	6);	90°
  5	 a	5	2,	b	5	8
  6	 r	5	(3,	21)	1	t(4,	25)
  7	 a)	 39.4	 b)	 (i)	 (9,	12),	(18,	28)	 (ii)	 	√

____

	481		
	 c)	 7	a.m.	 d)	 24.4		km	 e)	 54	minutes
  8	 r	5	t(2i	1	3j)
  9	 b)	 (2,	3.25)
10	 c)	 90°
	 d)	 (i)	 12x 2	5y	5	301	 (ii)	 (28,	7)
11	 117°
12	 2x	1	3y	5	5
13	 a)	 (6,	20)	 b)	 (i)	 (6,	28)	 	 (ii)	 10
	 c)	 4x	1	3y	5	84	 d)	 collide	at	15:00
	 f)	 26		km
14	 72°
15	 a)	 3.94		m	 b)	 1.22	m/s
	 c)	 x	2	0.7y	5	2	 d)	 	( 		170

	___	29		,			160
	___	29			)	

	 e)	 Speed	5	1.24	m/s

16	
x
y

	5	
1
3

	1t	
5
2

	

17	 2x 2	1	7x	2	15	5	0,	x	5			3	_	2		,	x	5	25
18	 a)	 (ii)	(288,	84)		(iii)	50	minutes	 b)	 20.6°
	 c)	 (i)	(99,	168)		(iii)	XY	5	75	 d)	 180		km
19	 3x	1	2y	5	7

20	 a)	 	
	___

	
›
	ST 	5	

9
9 ,	V(24,	6)	 b)	 r	5(24,	6)	1	(1,	1)

	 c)	 	5	5	 d)	 (i)	 a	5	5	 (ii)	 157°
21	 81.9°
22	 a)	 13	 b)	 		1	_	5		(3i	1	4j)	 c)	 		56

	__	65		
23	 (2,	3)
24	 a)	 (3,	22)	 c)	 (iii)	 23	square	units

25	 a)	 	
	___

	
›
	OB 	5	

21
7

;		
	___

	
›
	OC 	5	

8
9 		 b)	 d	5	11

	 c)	 	
	___

	
›
	BD 	5	

12
23

		 d)	 (i)	
x
y

	5	
21
7

	1t	
12
23

		 (ii)	 t	5	0

26	 a)	 (i)	 	
	___

	
›
	AB 	5	

25
1

		 (ii)	 AB	5		√
___

	26			 b)	 	
	___

	
›
	AD 	5	

d	2 2
25

	

	 c)	 (ii)	 	
	___

	
›
	OD 	5	

7
23

	 d)	 	
	___

	
›
	OC 	5	

2
24

	 e)	 130

27	 a)	 (i)	 	
	___

	
›
	BC 	5	26i	2	2j	 (ii)	 	

	___
	
›
	OD 	5	22i	 b)	 82.9°

	 c)	 r	5	i	2	3j	1	t (2i	1	7j)	 d)	 15i	1	46j
28	 a)	 (5,	5,	25)	 b)	 (25,	0,	5)	 c)	 (5,	5,	25)
29	 b)	 (i)	 (49,	32,	0)	 (ii)	 54		km/h	
	 c)	 (i)	 		5	_	6			hours	 (ii)	 (9,	12,	5)

30	 a)	 (i)	 	
	___

	
›
	AB 	5	

800
600

			

	 b)	 (ii)	
2400
250

		(iii)	at	16:00	hours

	 c)	 27.8		km
31  a)	 c	=	1	 	 	 b)	 3i	+	3k
	 c)	 r	=	3(1	2 t)i	+	(3	2	t)j	+	(5	+	3t)k
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Answers

	 d)	 9x	2	15y	+	4z	2	2	=	0	 e)	
	

15
322

32  a)	
	   
AB
 

= 2i 23j + k; BC
 

= i + j
	 b)	 2	i +	j	+	2k  	 c)	

	

6
2

	 d)	 2x	+	y	+	2z	=	3

	 e)	

	  

2 2t

21 + t

26 + 2t





 	

	 	 	 	 	 f)	 	3 6

	 g)	
	  

1
6

2i + j + 2k( )
	 	 	 	

h)	 E(24,	5,	6)

33  Proof
34  a)	 P(4,	0,	23),	Q(3,	3,	0),	R(3,	1,	1),	S(5,	2,	1)
	 b)	 3x +	2y +	4z =	0
	 c)	 0
35  a)	 147°	 b)	 2.29

	 c)	 (i)	

 	  

L
1

:

2

21 + λ

2λ






; L

2
:

21 + µ

123µ

12 2µ





 	

	 (ii)	 no	solution

	 d)	
	

9
21

36  a)	 (1,	21,	2)
	 b)	 11i	2	7j	2	5k
	 c)	 v.u	=	0

	 d)	 r	=	
1

21
2

				+	t	
6

13
25

	

37  a)	 (i)	 25i	+	3j	+	k	 (ii)	
	

35
2

	 b)	 (i)	 25x	+	3y	+	z	=	5

	 	 (ii)	
	  

x 25
25

= y + 2
3

= z 21

	 c)	 (0,	1,	2)	 d)	 	 35

38  a)	
	  
x 2 2 = y 25 = z + 1

	
	 b)	

	 

1
3

, 10
3

,2 8
3( )

	 c)	
	  

′A 2 4
3

, 5
3

,213
3( )

	
	 d)	

	

654
3

39  a)	 3x	2	4y +	z =	6

	 b)	 (ii)	 r	=	
1
2

11
	+	t	

1
4

13
		 c)	 53.7°

40  a)	  	 3µ 2 2, µ, 9 2 2µ( )

	 b)	 (i)	 r	=	
4
0

23

		+		
3
1

22

	

	 	 (ii)	 	
	___

	
›
	PM		=	

3µ	2	6
µ

12	2	2µ
		

	 c)	 (i)	 µ =	3	 (ii)		3 6

	 d)	 2x	2	4y +	z	=	5	 e)	 verify

41  a)	 (1,	21,	2)

	 b)	 2x	2	y	+	z	=	5

	 c)	 (3,	1,	3)	and	(1,	2,	2)

42  a)	 (i)	 	=	µ

  	 (ii)	 	r =	
2
1
1

	+	t	
21
22
21

	 b)	 3x	2	2y +	z	=	5

	 c)	 r =	
2
1
1

	+	t	
21
22
21

Chapter 15
Exercise 15.1
  1  a)	

	  
′y = 12 3x 28( )3

	 b)	
	  

′y = 2 1
2 12 x

	 c)	
	  

′y = cos2 x 2 sin2 x

	 d)	
	 

′y = cos x
2( ) 	 e)	

	  

′y = 2 4x

x 2 + 4( )3

	 f)	

	  

′y = 22

x 21( )2

	 g)	

	  

′y = 21

2 x + 2( )3
or	 21

2x + 4( ) x + 2











	 h)	
	  

′y = 22 sin x cos x

	 i)	

	  

′y = 2x + 2

2 12 x( )3
or	 2x + 2

2 2 2x( ) 12 x











	 j)	

	  

′y = 26x + 5

3x 2 25x + 7( )2 	 	 k)	

	 

′y = 2

3 2x + 5( )23

	 l)	
	  

′y = 2 2x 21( )2
7x 4 2 2x 3 + 3( )

  2  a)	
	  
y = 212x 211	 b)	

	  
y = 9

5
x 2 2

5

	 c)	  	  y = 2x 2 2π 	 d)	
	 
y = 1

2
x + 1

2
  3  a)	

	  
v t( ) = 22t sin t 2 21( )	 b)	 velocity	= 0

	 c)	  	 t = π + 1 ≈ 2.04, t = 1

	 d)	 	Accelerating	to	the	right	then	slowing	down,	turning	

around,	accelerating	to	the	left,	slowing	down,	turning	

around	again,	then	accelerating	to	the	right.

  4  a)	
	  
y = 212x + 38	 b)	

	 
y = 1

12
x + 7

4

  5  a)	
	 
y = 2

3
x + 5

3
	 b)	

	  
y = 2 3

2
x + 6

  6  a)	
	 
y = 1

4
x + 1

4
	 b)	

	  
y = 24x + 9

2
  7	 a)	

	 

dy
dx

= 2 sin 2x( ) ;
d 2y

dx 2 = 4 cos 2x( )

	 b)	
	 

π
4

, 0( ) 	and	 3π
4

, 0( )
  8  a)	 (i)	

	
0, 0( ) 	and	 4, 0( ) 	 (ii)	

	

4
3

, 256
27( ) 	 (iii)	

	

8
3

, 128
27( )

	 b)	

	 	

x

y

�3

�2

�1

1

0

2

3

4

5

6

7

8

9

10

�1 1 2 3 (4, 0)(0, 0) 4 5 6

8
3 ,(             )128

27

(             )4
3 , 256

27
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  9  c)	
	 

′′f 3.8( ) = 0 	and	
	 

′′f 3( ) = 1
3

> 0,	
	  

′′f 4( ) = 2 2
625

< 0,	

	 	 	therefore	graph	of	f	changes	concavity	from	up	to	down	

at		 x = 3.8	verifying	that	graph	of	f	does	have	an	inflexion	

point	at		 x = 3.8

10 

	 

dy
dx

= 2a

x + a( )2 ;	

	  

d 2y

dx 2 = 24a

x + a( )3

	

11 

	  

dny

dxn =
21( )n +1

n !

x 21( )n +1 or n !
(12 x)n +1







12  a)	 Max.	at	
	

0, 2( );	inflexion	pts	at	or	(22,	1)	and	(2,	1)

	 b)	 (i)	 None	 (ii)	 none	 (iii)	 all	
 x ∈

	 c)	 (i)	
	 
lim
x→∞

g x( ) = 0 	 (ii)	
	 
lim

x→− ∞
g x( ) = 0

	 d)	

    x

y

2

�6 �4 �2 0 2 4 6

13 

	 

d
dx

c ⋅ f x( )( ) = d
dx

c( ) ⋅ f x( ) + c ⋅ d
dx

f x( )( )

= 0 ⋅ f x( ) + c ⋅ d
dx

f x( )( ) = c ⋅ d
dx

f x( )( )

14 
	  
y = x 2 x 2 26( ) = 0	when	x = 0	and	x = ± 6 ;	

	
	  
y 1

2( ) = 2 23
16

< 0,	so	
	 
y < 0	for	0 < x < 1

	 	  

dy
dx

= 4x x 2 23( ) = 0	when	x = 0, 	x = ± 3;	when

	
	  
x = 1

2
,

dy
dx

= 211
2

< 0 ,	so	
	 

dy
dx

< 0	for	0 < x < 1

	 	  

d 2y

dx 2 = 12 x 2 21( ) = 0	when	x = 0, 	x = ±1;	when

	
	  
x = 1

2
,

d 2y

dx 2 = 29 < 0,	so	
	 

d 2y

dx 2 < 0	for	0 < x < 1

	 	 

d 3y

dx 3 = 24x > 0	for	0 < x < 1

Exercise 15.2

  1  a)	
	 

′y = x 2e x + 2xe x 	 b)	
	 

′y = 8x ln 8

	 c)	
	 

′y = e x sec2 e x( ) 	 d)	

	 

′y = cos x + x sin x + 1

1 + cos x( )2

	 e)	
	  

′y = xe x 2e x

x 2 	 f)	
	 

′y = 2 tan3 2x( ) sec 2x( )

	 g)	
	 

′y = 1
4( )x

ln 1
4( ) 	 h)	

	 
′y = cos x

	 i)	

	  

′y = 2xe x + e x 21

e x 21( )2 	 j)	
	  

′y = 212 cos 3x( ) sin sin 3x( )( )

	 k)	
	 

′y = 2 ln 2 2x( ) 	 l)	

	  

′y = cos3 x 2 sin3 x

cos x 2 sin x( )2

  2  a)	
 	  
y = 1

2
x + 3 3 2 π

6

	 b)	
	 
y = 2x + 1

	 c)	  	  y = 16x + 4 2 2π

  3  a)	
 	 
x = π

6
, x = 5π

6

	 b)	 Maximum	at	
	 
π
6

,	minimum	at	
	 
5π
6

  4 
	 

0,21( )	is	an	absolute	maximum

  5  a)	 Maximum	at	
	 

π
2

,5( );	minimum	at	
 	 

3π
2

,23( )
	 b)	 Minimum	at	

 	 

3π
4

,21( ) 	and	
 	 

7π
4

,21( )
  6 

	  
x = π

2

  7  a)	
	  

′f x( ) = e x 23x 2; ′′f x( ) = e x 26x

	 b)	 x  3.73	or x  0.910	or x  20.459

	 c)	 Decreasing	on	(2,	20.459)	and	(0.910,	3.73);

	 	 increasing	on	(20.459,	0.910)	and	(3.73,	)

	 d)	 	x  20.459	(minimum); x  0.910	(maximum); 

x  3.73	(minimum)

	 e)	 x  0.204	or x  2.83

	 f)	 	Concave	up	on	(2,	0.204)	and	(2.83,	);	concave	down	

on	(0.204,	2.83)

  8  The	two	functions	intersect	for	all	x	such	that	

	  cos x = 1, i.e.	x = k ⋅ 2π, k ∈.	The	derivatives	for	the	

two	functions	are	
  

′y = 2e2x 	and	
	  

′y = 2e2x cos x + sin x( ).

The	derivatives	are	equal	whenever	
	  x = k ⋅ 2π, k ∈ .	

Therefore,	the	functions	are	tangent	at	all	of	the	intersection	

points.

  9  a)	 8	m	s22	 b)	 2.09	m	s21

10 
 
y = ex

11  a)	
	 

′f x( ) = 2x ln 2 	

	 b)	
	 
y = x ln 2 + 1

	 c)	
	 

′f x( ) = 2x ln 2 ≠ 0 	for	any	x

12  a)	
	  
21,22e( ) 	and	 3, 6

e 3( )
	 b)	

	  
21,22e( )	is	a	minimum;	

	 
3, 6

e 3( ) 	is	a	maximum

	 c)	 (i)	
	 
lim
x→∞

h x( ) = 0

	
	 (ii)	 as	

	  
x → 2∞, h x( ) 	increases	without	bound

	 d)	 Horizontal	asymptote	
	 
y = 0

	 e)	

	 	

x

y

�4

�5

�6

�3

�2

�1

1

0

2

3

4

�2 �1 1 2 3

(�   3, 0)

(�1, �2e)

3,(         )6
e3

(   3, 0)

4
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Answers

13  a)	
	  
a = π

2
, b = π, c = 3π

2

	 b)	
 	 

d n( )

dx n( ) sin x( ) = sin x + n ⋅ π
2( ) , n ∈+

14  a)	
 

d
dx

xe x( ) = xe x + e x ;	
	 

d 2

dx 2 xe x( ) = xe x + 2e x ;	

	 	
	 

d 3

dx 3 xe x( ) = xe x + 3e x

	 b)	
 

d n( )

dx n( ) xe x( ) = xe x + ne x

Exercise 15.3

  1 
  

dy
dx

= 2 x
y 	

  2 
	  

dy
dx

= 22xy 2 y 2

x 2 + 2xy

  3 
	 

dy
dx

= cos2 y or	
dy
dx

= 1
1 + x 2







  4 
	  

dy
dx

= 22x + 3y 2 2 y 3

26xy + 3xy 2 2 2y 	
  5 

	 

dy
dx

= x 2y + y 3

x 3 + xy 2

  6 
	  

dy
dx

= 22xy 2 2y 2 2 xy

2x 2 + 2xy + xy 	
  7 

	  

dy
dx

= y 21
cos y 2 x

  8 
	  

dy
dx

= 4x 3 2 2xy 3

3x 2y 2 + 4y 3

	
  9 

  

dy
dx

= 2y

x + e y

10 
	 

dy
dx

= x + 2
y + 3

11 
	  

dy
dx

= 2sin2 x + y( ) or	
dy
dx

= 2 x 2

x 2 + 1






12 

	  

dy

dx
=

18x 2 xy 2 y

x + 2 xy 	
13 

	  
y = 2 7

5
x + 4

5
;	

	  
y = 5

7
x 2 24

7

14 
	  
y = 22x + 4 ;	

	 
y = 1

2
x + 3

2

15 
 	  
y = 2 π

2
x + π ;	

 	  
y = 2

π
x + π2 2 4

2π

16 
	  
y = 2 352

23
x 2 32

23
;	
	  
y = 23

352
x 2 5655

176

17 
	  
x 2 + y 2 = r 2 ⇒ dy

dx
= 2 x

y
;	at	point	

	  
x

1
, y

1( ) , m = 2
x

1

y
1

;	

	 centre	of	circle	is	
	

0, 0( ) ;	slope	of	line	through	
	 

x
1
, y

1( ) 	

	 and	
	

0, 0( ) 	is	

	 

y
1

x
1

;	because	

	  
2

x
1

y
1

×
y

1

x
1

= 21,	the	tangent	to	the	

	 circle	at	
	 

x
1
, y

1( ) 	and	the	line	through	
	 

x
1
, y

1( ) 	and	
	

0, 0( ) 	are	

	 perpendicular

18  a)	
	 

7, 0( ) , 2 7, 0( ) ;	
	  

dy
dx

= 22x 2 y
x + 2y

,	at	both	points	

	 	
	  

dy
dx

= 22

	 b)	
	 

7
3

,22 7
3





 	and	 2 7

3
, 2 7

3






	 c)	
	 

2 7
3

,2 7
3





 	and	 22 7

3
, 7

3






19 
	

0, 0( )
20 

	  

dy
dx

= 2 4x
9y

,	
	  

d 2y

dx 2 = 236y 2 216x 2

81y 3

21 

	  

dy
dx

= 2 2 y

x + 3( )2 ,
d 2y

dx 2 = 2y 2 4

x + 3( )2

22  a)	

	  

dy
dx

= 21

3x
4
3

,	

	 

d 2y

dx 2 = 4

9x
7
3

	 b)	
	  

dy
dx

= 2
y

3x
,	
	 

d 2y

dx 2 = 4y

9x 2

23 
	 
y = x + 1

2 	
24 

	 

dy
dx

= 3x 2

x 3 + 1

25 
	 

dy
dx

= cot x
	

26 

	  

dy
dx

= x
x 2 21( ) ln 5

27 
	  

dy
dx

= 21
x 2 21 	

28 
	 

dy
dx

= 1
2x ln10 log x

29 
	  

dy
dx

= 2a
x 2 2a 	

30 
	  

dy
dx

= 2sin x

31 

	  

dy
dx

= 21

x ln 3 log
3

x( )2

	

32 
	 

dy
dx

= ln x

33  0	 	 34 
	  
y = 1

8 ln 2( ) x 2 1
ln 2

+ 3

35  Verify

36 

	 

x = 1

e
3
2

37  a)	
	  

′g x( ) = 12 ln x
x 2 ,	

	  
′′g x( ) = 23 + 2 ln x

x 3

	 b)	
	 

′g x( ) = 0	only	at	x = e ;	
	  

′′g e( ) = 2 1
e 3 < 0,	∴ 	abs.	max.	

	 	 at	 x = e ,	max.	value	of	g	is	
	 

1
e

38 
	 

dy
dx

= 1
x 2 + 2x + 2 	

39 
	 

dy
dx

= 1
x 2 + 1

40 
	 

dy

dx
= 6

x x 4 − 9 	
41 

	  

dy
dx

= tan21 x + x
x 2 + 1( )e x tan21 x

42 
	 

′f x( ) = 0;	the	graph	of	
 
f x( ) 	is	horizontal

43  Verify

44 
 	  
y = π + 4

2( ) x + π 2 4
4

45  a)	 For	 	  0  x < π, ′f x( ) = 21 ,	therefore	
 
f x( ) 	is	linear

	 b)	
 	  
y = 2x + π

2
46  	 10 ≈ 3.16 	m

47  a)	 		1	_	4			m	s21,			1
	__	20				m	s21

	 b)	 2			1	_	4			m	s22,	2			13
	___	800			m	s22

	 c)	 	The	particle	initially	is	moving	very	fast	to	the	right	and	
then	gradually	slows	down	while	continuing	to	move	to	
the	right.

	 d)	
	  
lim
t →∞

s t( ) = π
2

m

Exercise 15.4
  1  a)	 	 

218.1	cm/min
	

	 b)	 	 
26.79	cm/min

  2  a)	 0.298	cm/sec
	

	 b)	0.439	cm/sec
  3  a)	 2π	cm/hr

	
	 b)	8π	cm/hr

  4 
	  
dθ
dt

= 3
34

≈ 0.0882 	radians/min	   5  26.4	m/sec

  6  2	ft/sec	   7  69.6	km/hr

  8 
	 

dy

dt
= 12

10
≈ 3.79

	
  9  0.01	m/sec

10  30	mm3/sec	
	

11  45	km/hr

12  		
8	√

__

	3		
	____	

3
	 		<	4.62	cm/sec

	
13  1.5	units/sec

14  222.2̄			m/sec	=	800	km/hr
15  a)	 115	degrees/sec	 b)	 57	degrees/sec
16 

	 
2485	km/hr

Exercise 15.5
  1 

	
2	by 2

2
  2 

	
13 1

3 	cm	by	6 2
3 	cm
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  3 
	

5
2

  4  b)	
	 
S = 4x 2 + 3000

x
	 c)	 7.21	cm	3	14.4	cm	3	9.61	cm

  5  	  x = 5 2π ≈ 12.5	cm 	   6  	 x ≈ 3.62	m
  7  Longest	ladder	≈ 7.02	m 	   8  	 d ≈ 2.64	km

  9 
	

8
5

	units2

	
10  6	nautical	miles

11  	 h = R 2 ,	
	 
r = R 2

2
12  Distance	of	point	P	from	point	X	is	

	  

ac

r 2 2c 2

13  	 x ≈ 51.3	cm,	maximum	volume	≈ 403	cm3

Practice questions
  1 

	

x

y

0

  2  a)	 (i)	
	  
a = 24 	 (ii)	 	 b = 2

	 	 (i)	
	  

′f x( ) = −3x 2 2 4x + 8

	 	 (ii)	
	 

22 + 2 7
3

, 22 2 2 7
3

	 	 (iii)	
	 
f 1( ) = 5

	 c)	 (i)	
	 
y = 8x 	 (ii)	

	  
x = 22

  3  a)	 (i)	
	 
v 0( ) = 0 	 (ii)	

	 
v 10( ) ≈ 51.3

	 b)	 (i)	
	  
a t( ) = 0.99e20.15t 	(ii)	

	 
a 0( ) = 0.99

	 c)	 (i)	 66	 (ii)	 0	
	 	 (iii)	As	object	falls	it	approaches	terminal	velocity

  4  a)	
	 
2 2

3
,2149

27( )	is	a	minimum,	
	 
24,13( )	is	a	maximum

	 b)	
	 
2 7

3
, 101

27( ) 	is	an	inflexion	point

  5  a)	 (i)	
	  

′g x( ) = 2 3
e 3x

	 	 (ii)	 		 e
3x > 0 	for	all	x,	hence	

	  
2 3

e 3x < 0 	for	all	

	 	 	 x ;	therefore,	
 
f x( ) 	is	decreasing	for	all	x

	 b)	 (i)	 	 e + 2
	 	 (ii)	

	  
′g − 1

3( ) = 23e
	 c)	

	  
y = 23ex + 2

  6  b)	 	
	 

′f 3( ) = 0	and	 ′′f 3( ) > 0 ⇒ 	stationary	point	at		 x = 3 	and	
graph	of	f	is	concave	up	at		 x = 3,	so	

	 
f 3( )	is	a	minimum

	 c)	
	

4, 0( )
  7  a)	

	  

2 4

2x + 3( )3

	 b)	
	 
5 cos 5x( )e sin 5x( )

  8 
	 
A = 1, B = 2, C = 1

  9 
	  

dy
dx

= 21,
d 2y

dx 2 = 24

10  a)	

	  

dy
dx

= 2xe x + e x 21

e x 21( )2

	 b)	
	 

dy
dx

= 2e x cos 2x( ) + e x sin 2x( )

	 c)	
	  

dy
dx

= 2x ln x + 2x ln 3 + x 2 1
x

11 
	  
y = 2 1

2
x 2 3

2
, P 23, 0( ) , Q 0,2 3

2( )
12  a)	 		 x = 3;	sign	of	

 
′′h x( ) 	changes	from	negative	(concave	

down)	to	positive	(concave	up)	at		 x = 3
	 b)	 		 x = 1;	

 
′h x( ) 	changes	from	positive	(h	increasing)	to	

negative	(h	decreasing)	at		 x = 1

13 
	 
y = 5

7
x + 11

7
14  	 h = 8	cm,	r = 4	cm
15  Maximum	area	is	32	square	units;	dimensions	are	4	by	8
16  a)	 E	 b)	 A	 c)	 C

17 
	  
y = 21

5
x + 32

5
18  a)	

	  
y = 4x 2 4

	 b)	
	  
y = 2 1

4
x + 1

4

19  a)	 Absolute	minimum	at	
	  

1
e

,2 1
2e







	 b)	 Inflexion	point	at	

	  

1

e 3
,2 3

2e 3







20  a)	 (i)			 a = 16 	 (ii)			 a = 54

	 b)	
	  

′f x( ) = 2x 2 a
x 2 = 0 ⇒ x = a

2
3 ;	

	 	
	 

′′f x( ) = 2 + 2a
x 3 ⇒ ′′f a

2
3





 = 4 > 0;	hence,	f	is	concave

	 	 up	at	any	critical	point,	so	it	cannot	be	a	maximum

21 
	  
y = 2 2

3
x + 4

22 
 	  
y = π + 2

2( ) x 2 π2

8
;	
 	  
y = 22

π + 2




 x + π

2π + 4
+ π

4

23  a)	 Maximum	at	
 	

0, 1
2π( ) ,	inflexion	points	at		( 21,			 1	_____	

	√
___

	2eπ 	
			)	 	

	 	 and		( 1,			 1	_____	
	√

___

	2eπ 	
			)	 

	 b)	
	 
lim

x→± ∞
f x( ) = 0;	

	 
y = 0 	(x-axis)	is	a	horizontal	asymptote

	 c)	

	 	
x

y

0

0.1

0.2

0.3

0.4

1�1�2�3 2 3

1,(             )1
2eπ

0,(            )1
2π

�1,(                )1
2eπ

24  a)	 	Min.	at		 x = 1 	because	
	 

′′f 1( ) = 1
2

> 0;	max.	at		 x = 3 	
because	

	  
′′f 3( ) = 21

6
< 0

	 b)	 	Inflexion	points	at	
	  
x = 2 3	and	x = 3 	because	

 
′′f x( ) 	

changes	sign	at	both	values
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Answers

25  	 x = 20 3 ≈ 34.6 	km/hr	 26 
	  

dy
dx

= 5
6

		or		
dy
dx

= 25
6

27 
	  

dy
dx

= 22x
2x 4 2 2x 2 + 1 	

28 
	 

dy
dx

= 2x ln x + x

29 
	  
sin x = 1

2
, sin x = 21

	
30 

	 
2 3

4

31  a)	
	  

′f x( ) = 2
2x 21 	

	 b)	
	 
x = 1 + 17

4

32  	  x ≈ 20.586	 33 
	  
c = 4 + π

4

34  a)	
	  ′f x( ) = π cos πx( )e1+ sin πx

	
	b)	

	 
x

n
= 2n + 1

2
35  a)	

	 	

�0.5 0.5

1.5

1

0.5

0

�1

�1.5

1�1

maximum
zero

minimum
zerominimum

maximum

	 b)	 (i)	

	  

′f x( ) = 7x 2 23

3 x 2 21( )
1
3

, domain:	 21.4  x  1.4, x ≠ ±1

	

domain:	21.4	<	x	<	1.4,	x	≠	±1

	 	 (ii)	 Maximum	at	
	 
x = 3

7
,	minimum	at	

	  
x = 2 3

7
	 c)	 	 x ≈ 1.1339

36 
	  
a = 24, b = 18

37  a)	
	  

dy
dx

= sec2 x 28 cos x 	 b)	
	 
cos x = 1

2
38  a)	

	  
y = 24x 28

	 	
	 b)	

	 
22, 0( )

39  Proof

40 
	  
y = 2x + 2

41  a)	 (i)	

	  

′f x( ) =
2 x 2 21( )

x 2 + x + 1( )2

	 	 (ii)	 A	( 1,			1	__	
3

			)	,	B(21,	3)		( or	A(21,	3),	B	( 1,			1	__	
3

			)		)	

	 b)	 (i)	

	
	 	 	

�2

0�1 1 x

y

	 	 (ii)	
	  
x ≈ 20.347, 1.53, 1.88

	 c)	 (i)	 Range	of	f :	
	

1
3

, 3



 	

	 (ii)	 range	of	
 
f  f :	

	

1
3

, 7
13







42 
	 

1
2π

	cm/s  43 
	  
y = 4

3
x 2 5

3

44  a)	 (ii)	
	  

′′f x( ) =
x 2 ln 2( )2

2 4x ln 2 + 2

2x

	 b)	 (i)	
	 
x = 2

ln 2

	
	 (ii)	

	 
′′f 2

ln 2( ) < 0;	therefore,	a	maximum

	 c)	
	  
x = 2 + 2

ln 2
≈ 4.93, x = 2 2 2

ln 2
≈ 0.845

45  a)	
	 

′f t( ) = 6 sec2 t tan t + 5 or	 ′f t( ) = 6 sin t
cos3 t

+ 5





	 b)	 (i)	 	 3 + 5π 	 (ii)	 5

46  a)	
	  
y = 21	 	 	 	 b)	

	 

dy
dx

= 4
5

47  a)	
	  

dy
dx

= 3e 3x sin πx( ) + πe 3x cos πx( )
	

	 b)	 	 x ≈ 0.743

48  240	km/hr	 49  b)	
	  
21

c
lnb, a

2b( )
50  a)	

	 
p = 2 	 b)	

	 
2 4

7

51  	 x ≈ 0.460 	 52 
	

1
10

	radians/sec

53 

	  

d 2y

dx 2 = 24

2x 21( )2

	

54 
	  
y = 2 5

4
x + 13

2

55  a)	
 	  

′′f x( ) = 10 cos 5x 2 π
2( )

	 b)	
 	  
f x( ) = 2 2

5
cos 5x 2 π

2( ) + 7
5

56 
	

5
4 	

  57 
	 
20.803,22.08( )

58  a)	
	 
k = ln 2

20
	 b)	 510	bacteria	per	minute

59 
	  
f x( ) = 21

5
x 3 + 12

5
x 2 23x + 2

60  a)	
	  

′f x( ) = 212 cos2 4x + 1( ) sin 4x + 1( )
	 b)	

 	  
x = π 2 2

8
, x = 3π 2 2

8
, x = π 21

4

61 
	  

dy
dx

=
3x 2 2 ln 3( )3x + y

ln 3( )3x + y 23
	

62  a)	
	 

′f x( ) = 3
3x + 1 	

	 b)	
	  
y = 2 7

3
x + 14

3
+ ln 7

63  Verify

64 
	  

dy
dx

= 12e
e 	 	 	 											

65  b)		 b = 6

66  a)	
	  

dy
dx

= 2 2k
2k 21

	 b)	 	 k = 2 	              67 
	

3
2

68  a)	
	  
5 5 x 2 + 4 + 5 2 2 x( ) 	minutes

	 c)	 (i)	 	 x = 1 	 (ii)	 30	minutes	

	 	 (iii)	
	 

d 2T
dx 2 > 0	for	x = 1;	therefore,	it’s	a	minimum

69  a)	
	  
P 2 1

2
,2 1

2e( )
	 b)	 	

	  
′′f x( ) = 4x + 4 = 0	at	x = 21,	and	

 
′′f x( )	changes	sign	at	

	  x = 21
	 c)	 (i)	 Concave	up	for		  x > 21

	 	 (ii)	Concave	down	for		  x < 21
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	 d)

	 	

x

y

(0, 0)

P

Q

�1 � 1
2

	 e)	 Show	true	for	n	=	1:
    f ' (x)	 =	e 2x	+	2xe 2x

	 	 	 =	e 2x	(1	+	2x)	=	(2x	+	20)	e 2x

	 	 Assume	true	for	n	 =	k,	i.e.	f (k)	(x)	
	 	 	 =	(2k	x	+	k	×	2k	−	1)	e 2x,	k	>	1

	 	 Consider	n	=	k	+	1,	i.e.	an	attempt	to	find			d	___	
dx

 	(	f (k)	(x))		

	 	 f (k	+	1)	(x)	 =	2k	e 2x	+	2e 2x	(2k	x	+	k	×	2k −	1)
	 	 	 =	(2k	+	2(2k	x +	k	×	2k	−1))	e 2x

	 	 	 =	(2	×	2k	x	+	2k	+	k	×	2	×	2k	−	1)	e 2x

	 	 	 =	(2k	+	1	x	+	2k	+	k	×	2k)	e 2x

	 	 	 =	(2k	+	1	x	+	(k	+	1)2k)	e 2x

  P(n)	is	true	for	k	⇒	P(n)	is	true	for	k	+	1,	and	since	true	for	n	=	
1,	result	proved	by	mathematical	induction	n  

+

70 
	 
72
π

arccos 8
13

	cm

71  a)	

	 	

x
0

y

	 b)	

	 	

x

y

0

Chapter 16
Exercise 16.1
  1	 		x	2	__	

2
			1	2x	1	c    2	 t	3	2	t 21	t	1	c

  3	 		x __	
3

			2			x	4	___	
14

			1	c    4	 		2t	3	___	
3

	 		1			t	
2
	__	

2
			2	3t	1	c

  5	 		5	u			
7
	_	5				___	7	 		2	u	4	1	c    6	 		

4x √
__

	x  
 _____	

3
	 		2	3	√

__
	x  	1	c

  7	 23	cos		1	4	sin		1	c    8	 t	3	1	2	cos	t	1	c

  9	 		
4x	2	√

__
	x  
 ______	5	 		2			

10x √
__

	x  
 ______	

3
	 		1	c  10	 3	sin		2	2	tan		1	c

11	 		1	__	
3

		e	3t	2	1	1	c  12	 2	ln|t|	1	c

13	 		1	__	
6

			ln	(3t	2	1	5)	1	c  14	 e	sin		1	c

15	 		
(2x	1	3)3

	________	
6

	 		1	c  16	 2	  5x	4	___	4	 		1			2x	3	___	
3

	 		1	cx	1	k

17	 2	  x	5	__	5			1			x	4	__	4			1			x	2	__	
2

			1	2x	2			11	___	
20

		  18	 		4t	3	___	
3

	 		1	sin	t	1	ct	1	k

19	 3x	4	2	4x	2	1	7x	1	3  20	 2	sin		1			1	__	
2

			cos	2	1	c

21 
	 

3x 2 + 7( )6

36
+ c

	
22 

	  

2 1

18 3x 2 + 5( )3 + c

23 
	 

8 5x 3 + 2( )5
4

75
+ c

	
24 

	 

2 x + 3( )6

6
+ c

25 
	  

2t 3 27( )3

9
+ c

	
26 

	  
2

2x + 3( )6

18x 6 + c

27 
	  
2

cos 7x 23( )
7

+ c
	

28 
 	  
2 1

2
ln cos 2θ 21( ) + 3( ) + c

29 
 	  
1
5

tan 5θ 2 2( ) + c
	

30 
	  
1
π

sin πx + 3( ) + c

31 
	 

1
2

sec 2t + c
	

32 
	 

1
2

e x 2 +1 + c

33 
	 

1
3

e 2t t + c
	

34 
	  
2
3

ln θ( )3 + c

35 
	 
ln ln 2z + c

	
36 

	  
2 1

15
325t 2( )3

+ c

37 
	  
1
3

tan θ3 + c
	

38  	  2cos t + c

39 
	 

1
12

tan6 2t + c
	

40 
	 
2 ln x + 2( ) + c

41 
	 

1
10

sec5 2t + c
	

42 
	 
1
2 ln x 2 + 6x + 7 + c

43 

	  

2 k 3

2a4 a2 2a4x 4 + c = 2 k 3

2 a
3 12a2x 4 + c

44 
	  

2
5

3x 2 2 x 2 2( ) x 21 + c
	

45 
 	  
2 1

π
cot πt + c

46 
 	  
2 2

3
1 + cos θ( )3 + c

	

47 
	  

2
105

15t 3 23t 2 2 4t 28( ) 12t + c

48 
	  

1
15

3r 2 + 2r − 13( ) 2r 21 + c
	
49 

	 

1
2

ln e x 2

+ e −x 2( ) + c

50 
	  

2
15

3t 2 + 20t + 230( ) t 25 + c

Exercise 16.2
  1  2			1	__	

3
		e2x3	+	c		   2  2e 2x	(x2	+	2x	+	2)	+	c	

  3  		2	__	
9

			x	cos	3x	2			2	___	
27

			sin	3x	+			1	__	
3

			x 2	sin	3x	+	c

  4  		1	__	
a3			(2	cos	ax	2	a2x 2cos	ax	+	2ax	sin	ax)	+	c

  5 	  	 sin x(ln(sin x)21) + c 	   6  		1	__	
2

			x2(ln	x 2	2	1)+	c

  7  		1	__	
3

		x3ln	x	2			1	__	
9

		x3	+	c    8  2ex	+	x2ex	2	2xex	2			1	__	
3

		x3	+	c

  9  		1	__	
π2			(cos	πx	+	πx	sin	πx)	+	c  10  		3	___	

13
			cos	2t e3t	+			2	___	

13
		e3t	sin	2t	+	c
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Answers

11  	√
______

	1	2	x2			+	x	arcsin	x	+	c  12  ex(x3	2	3x2	+	6x	2	6)	+	c

13 
	  
2 1

4
e22x(cos 2x + sin 2x) + c

14 
	  
	 1

2
x sin(ln x)2cos(ln x)( ) + c

15 
	 
	 1

2
x sin(ln x) + cos(ln x)( ) + c

16 
	  
ln x + 1 2 2x + x ln x 2 + x + c

17 
	 

ekx(k sin x − cos x) + c
k 2 + 1 	

18  	 x tan x + ln cosx

19 
	 
2
3 sin3 x

	
20  		1	__	

2
			arctan	x(1	+	x2)	2			1	__	

2
		x	+	c

21 
	  
2 x ln x 2 2( ) + c

	
22  	 t tan t + ln cos x + c

23  Verification
24  	  2x 4 cos x + 4x 3 sin x + 12x 2 cos x 2 24x sin x 2 24 cos x + c
25 

	  

x 5 sin x + 5x 4 cos x 2 20x 3 sin x 260x 2 cos x + 120x sin x
+ 120 cos x + c

26 
	  
e x x 4 2 4x 3 + 12x 2 2 24x + 24( ) + c

27  Proof	 28  Proof	 29  Proof
30  Proof	 31  Proof

Exercise 16.3
  1 

	  
1

80 cos 5t 2 1
48 cos 3t 2 1

8 cos t ;c cos5 t
5 − cos3 t

3 + c

  2 
	 
cos6 t

6 − cos4 t
4 + c

  3 
	  
cos4 3θ

12 + c

  4 
	 

1
3 cos3 1

t( ) − 2
5 cos5 1

t( ) + 1
7 cos7 1

t( ) + c

  5  	 sec x + cos x + c 	   6 
	 

1
18

tan6 3x + c

  7 
	  

1
24

3 tan4 θ2 + 2 tan6 θ2( ) + c
	

  8 
	 
2
5 sec5 t − 2

3 sec3 t + c

  9 
	  

1
15

tan3 5t 23 tan 5t + 15t( ) + c

10  	  tan t 2 sec t + c 	 11  	  csc t 2cot t + c
12 

	  2 ln 1 − sin t + c 	
13 

	  22x 2 3 ln sin x + cos x + c

14 
	  arctan sec θ( ) + c

	
15 

	 

1
2

arctan t( )2 + c

16 
	 
ln arctan t + c

	
17 

	 
arcsin ln x( ) + c

18 
	  

2cos x
3

sin2 x + 2( ) + c
	

19 
	  
2
5 cos2 x cos x 25 cos x( ) + c

20 
	  

2cos x
3

2 sin2 x + 4( ) + c
	

21 
	 

sin sin t( )
3

cos2 sin t( ) + 2( ) + c

22 
	  ln sin θ + 2 sin θ + c 	

23 
	  
t sec t 2 ln sec t + tan t + c

24 
	  
2 ln 2 2 sin x( ) + c

	
25 

	 
1
2 ln cos e −2x( ) + c

26 
	 
2 ln sec x + tan x + c

	
27 

	 

1
2

tan x + c

28 
	  

1
6

arcsin 3x + 3x 129x 2( ) + c
	

29 
	 

x

4 x 2 + 4
+ c

30 
	 
2 ln t + t 2 + 4 + 1

2 t t 2 + 4 + c
	

31 
	 

3
2

arctan 1
2

et( ) + c
	

32 
	 

1
2

arcsin 2
3

x( ) + c

33 
	 

1
3 ln 3

2 x + 1
2 9x 2 + 4 + c

	
34 

	 
ln 1 + sin 2x + sin x + c

35  	  2 4 2 x 2 + c 	 36 
	 

1
2

ln x 2 + 16( ) + c

37 
	  
2arcsin x

2( )2 4 2 x 2

x
+ c

	
38 

	  

1
9

x

9 2 x 2
+ c

39  		
	(	x	2		+	1)	

	( 		3	__	
2

			)	
	
	_________	

3
	 		+	c

	
40  		

	(	e	2x		+	1)	
(		3	__	
2

		)
	
	_________	

3
	 		+	c

41 
	 
1
2 arcsin e x( ) + e 1 − e 2xx( ) + c

	
42 

	 
ln 1

3
e x + 1

3
e 2x + 9( ) + c

43 
	  
2 x ln x 2 2( ) + c

44 
	  
12 ln x + 2( ) + 8

x + 2
+ x 2

2
2 4x + c

45 
	 

1
2

ln x 2 + 9( ) + c
1
;	
 	 
x = 3 tan θ	yields	 ln x 2 + 9

3






+ c
2
;	they	

	 differ	by	a	constant

46  x	2	3	arctan		( 		x __	
3

			)		+	c1;	x	=	3	tan		yields	

	 3(tan		2	)	+	c2	=	3		( 		x __	
3

			2	arctan			x __	
3

			)		+	c2

Exercise 16.4
  1	 24    2	 40

  3	 		24	___	
25

		    4	 0

  5	 		
176	√

__
	7			2	44
	__________	5	 	    6	 0

  7	 2    8	 2268

  9	 		64	___	
3

		  10	 2

11	 ln	( 		11	___	
3

			)		 12	 		44	___	
3

			2	8	√
__

	3		

13	 3  14	 	√
__

	p  	1	1
15	 a)	 6	 b)	 6	 c)	 12	 						16   1
17  4	 18  0

19  		π __	
2

			 20  		π __	
6

		

21  		π __	
3

			 22  		π __	
8

		

23 
	

14 17 + 2
3 	

24  		1	__	π 	

25  In(2)	 26  	 16 2 25 5

27  	 14 2 10 	 28  		3	__	
2

		

29 
 	 
π

3
2 2 3

27
2 1

12




 	

30  		π __	
6

		

31 
	 
2 1

2
ln 37

52( )
	

32 
	 
2arctan 15 2 7

4( )or 1
2 arcsin 1

4( ) − arcsin 3
4( )( )

33  		2	__	
3

			 34  0

35  24	 36  		π __	
6

		

37 
	

1
6

arctan 4 3
9





   38 

 	 

π 3 23 3 arctan 3
2







18

39  		1	__	
6

			   40 
	  

e 21
2

41 
	 
1 + e

2 	
42  2	cos(1)	+	2

43  		31	___	5			 	 44  		2	__	π 	

45 
 	 
12 2 4 3

π 	
46 

	  

e 8 21
8e 8

47 
	 

π
6 ln 3 	

48 
	 

sin x
x
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49 
	  
2 sin t

t 	
50 

	  
22x sin x 2

x 2

51 
	 
2x sin x 2

x 2
	

52 
	 

cos t
1 + t 2

53 
	  

b 2a
5 + x 4

	
54   	 2csc θ 2 sec θ

55 

	 

1

4x
3
4

e x + 3x
1

2





	

56  Yes

57  a)	
	 

1
3

ln 3k + 2
2( ) 	 b)	

	  
k =

2 e 3 21( )
3

58  Proof	 59 
	  
2 12 x( )k +1 1

k + 1
+ 12 x

k + 2( )
60  a)	 0	 b)	 	 47

	 c)	
	

15 47
47 	

61  Proof

Exercise 16.5
	 1  		1	__	

2
		((1	+	2	√

_
	2		)ln	|x	2		√

_
	2		|	1	(1	–	2	√

_
	2		)	ln|x	1		√

_
	2		|)

	 2  3	ln|x	2	2|	2	2	ln|x|	1	c

	 3  		1	_	
2

			ln|x 2	1	4x	1	3|	1	c

	 4  2	ln|x	1	1|	1	6	ln|x|	2			 9	____	
x	1	1

			1	c

	 5  ln|x	1	3|	1	3	ln|x	1	2|	2	2	ln|x|	1	c

	 6  ln|x	1	1|	1	3	ln|x|	1			1	_	x 		1	c

	 7  2	ln|x	1	2|	1	ln|x	2	1|	1	c

	 8  		3	ln|2x	2	1|	________	
2

	 		2	2	ln|x	1	1|	1	c

	 9  3	ln|x	1	2|	1			 2	____	
x	1	2

			1	c

10  ln|x	2	2|	2	4	ln|x	1	1|	1	3	ln|x|	1			6	_	x 		1	c

11  2	ln|x 2	1	1|	1	2	ln|x|	1	c

12  				
√

_
	3			___	

3
	 		arctan	(				√

__
	3x 	
	___
	3	 	)2			ln|x 2	1	3|	_______	

3
	 		1			2	ln|x|	____	

3
	 		1	c

13  				
√

_
	3			___	

2
	 		arctan		( 		x ___	

	√
_

	6		
			)		2			ln|x 2	1	6|	_______	

6
	 		1				ln|x|	____	

3
	 		1	c

14  				
√

_
	2			___	

2
	 		arctan	(			√

_
	2		x
 

___
	4	 	)	2			3	__	

16
			ln|x 2	1	8|	1			3	_	

8
			ln|x|	1	c

15  		ln|x	2	5|	______	
3

	 		1			2	ln|x	1	1|	________	
3

	 		2	ln|x|	1	c

Exercise 16.6
  1	 		125	___	

6
	 	    2	 		9p	2	____	

8
	 		1	1

  3	 4	√
__

	3			   4	 		10
	__	3		

  5	 		8	__	21		    6	 		125
	___	24		

  7	 		13
	__	12		    8	 4p

  9	 		59
	__	12			 10	 Approx.	361.95	(4	points	of	intersection!)

11	 3		ln		2	2			63	___	
128

		  12	 Between	2	  p __	
6

			and			p __	
6

		,		√
__

	3				ln		( 		3	__	4			)		2	2	√
__

	3			1	4

13  18	 14  		32
	__	3			 15  		64

	__	3		

16  9	 17  		9	_	2			 18  19

19 
	

2 3
3

+ 2
	

20  		37
	__	12			 21  		1	_	2		

22 
	

2 2
3 	

23  		269
	___	54			 24 

	  

e
2

21

25 
	

288 3
35 	

26 
	

2 2
3 	

27  		16	___	
3

		

28  25.36	 29  m	=	0.973	 30  		37	___	
12

		

Exercise 16.7

  1	 		127p _____	
27

	 	    2	 		64	√
__

	2		p
 ______	

15
	 	

  3	 		70p ____	
3

	 	    4	 6p

  5	 9p    6	 2p

  7	 	( 			√
__

	3		
	___	

2
	 		1	1	)	p    8	 		512p _____	

15
	 	

  9	 Approx.	5.937p  10	 		32p ____	
3

	 	

11 
 	 
π 3 21( )

	
12 

	 
23π
210

13 
	 
288π − 160π 5

3 	
14 

	 
64
15

π

15 
 	 
π 1

2
2 1

4
3( )

	
16 

	 
1778

5
π

17 
	 
252
5

π
	

18  	 1419π

19 
	 
9
8

π
	

20  a)	
	 
88
15

π 	 b)	
	 
7
6

π

21  	 40π
	

22 
	  9π 2 2 2( )

23 
	 
32
15

π
	

24 
 	 
4
5

π 121 33 2 25 15( )
25 

 	 
2π ln 2 2 1

4( )
	

26 
 	 
2π 11

3
11 2 2

3
2( )

27 
 	 
28
3

π 34 2 7( )
	

28 
 	 
π 1

2
2π 2 π + 2( )

29 
	 
284

3
π

	
30  2π

31 
	 
256
15

π

Exercise 16.8
  1	 		70

	__	3				m,	65		m    2	 8.5		m	to	the	left,	8.5		m
  3	 1		m,	1		m    4	 2		m,	2	√

__

	2				m

  5	 18		m,	28.67		m	   6	 		4	__	p  		m,			4	__	p  	m

  7	 3t,	6		m,	6		m    8	 t	2	2	4t	1	3,	0,	2.67		m

  9	 1	2	cos	t,		( 			3p ___	
2

	 		1	1	)		m,		( 			3p ___	
2

	 		1	1	)		m

10	 4	2	2	√
_____

	t	1	1		,	2.43	m,	2.91		m

11	 3t	2	1			 1	________	
2(1	1	t)2			1			3	__	

2
		,	11.3		m,	11.3		m

12 
	 
4. 9t 2 + 5t + 10

	
13  	  16t 2 2 2t + 1

14 
 	  
1
π

2 cos πt
π 	

15 
	 
ln t + 2( ) + 1

2
16  	 e

t + 19t + 4 	 17  4.9t2	2	3t

18  sin(2t)	2	3	 19 
 	  
2cos 3t

π( )
20  12;	20	 21  		13	___	

2
		;			13	___	

2
		

22  		9	__	4		;			11	___	4			 23 
	 
2 3 26; 6 2 2 3

24  2			10	___	
3

		;			17	___	
3

			 25  		204	___	
25

		

26  26;			13	___	
2

			 27  		166	___	5	 	;			166	___	5	 	;			166	___	5	 	

28  a)	 50	2	20t  b)	 1062.5	
29  1.27 s
30  a)	 5 s	 b)	 272.5	m	 c)	 10 s
	 d)	 2	49	m/s	 e)	 12.46 s	 f)	 273.08	m/s
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Answers

Exercise 16.9
  1 

	 
y = ±10e x 4

	
  2 

	 
y = ±e

1
2

x 2

  3 
	  
y = 2

2 2 x 2
	

  4 
	  
y = 1

32 x

  5 
	  
y = ln e

12ex( )
	

  6 
	  
y = ln e x 2C( )

  7 
	  
y 3 =

3 x + 1( )2

2
2 1

2 	
  8 

	 
y = 1

ln x + 1 + 1

  9 
	 
2y 3 + 6y = 3x 2 + 6x + 72

	
10 

	  
y 2 = e x 2

21

11 
	 
arctan y = x 2

2 + c
	

12 
	  
y + ln y = x 2

2 2 x 11

13 
	 
x + ln 1

x + Ce x + 1 	
14 

	  

y 21
y + 1

= e x −1( )2

+ c

15 
	 

y + 1( ) ln y + 1 + 1 = (y + 1) ln ln x( ) + c

16 
	 
1 + 2y 2 = c tan4 x

2 	
17 

	  
arcsin y = 12 12 x 2

18 

	 

y = ln ln
e e x + 1( )

1 + e











	

19 
	  
y + ln y = x 3

3 2 x 25

20 
	 
cos y = 2

4 e x + 1( )
	

21 
	  
y = x e x 221

22 
	  
2 ln y 2 y 2 = e x 2

2 2
	

23 
	 
y + ln sec y = 1

3
x 3 + x + c

24 
	  

y 2 + 1( )3
= 3et t 21( ) + c

	
25 

	   
e2y y + 1( ) = 21

3 sin3 θ + c

26 
	  
e 3y + 3y 2 = 3 cos x + x sin x( )2 2

27 
	  
y = e x 2 x 2 + 2

	

28  b)	
	 
C = 78;m = 1

15 ln 8
13 ; 45.3 minutes

Practice questions
  1	 a)	 p	5	3	 b)	 3	square	units

  2	 a)	 (0,	1)	 b)	 V	5		∫ 
	0

		
ln	2

		( 	e 			
x
 _	2				)		

2
dx

  3	 a	5	e	2

  4	 a)	 y	5			x __ e  
  5	 a)	 (i)	400		m	 (ii)	 v	5	100	2	8t,	60		m/s
	 	 (iii)	8		s	 (iv)	 1344	m
	 b)	 Distance	needed	625
  6	 b)	 2.31	 c)	 2p	cos	x	2			x	2	__	

2
			1	c;	0.944

  7	 ln		3
  8	 a)	 (ii)	 (1.57,	0);	(1.1,	0.55);	(0,	0),	(2,	21.66)

	 b)	 x	5			p __	
2

			 c)	 (ii)	 	∫ 
	0

		
		p 
__	2		

	x	2				cos	x dx	 d)	 		p
2
	___	

2
			22

  9	 a)	 2p
	 b)	 Range:	{y |	20.4	,	y	,	0.4}
	 c)	 (i)	 23	sin	3	x	1	2	sin	x	 (iii)	 		

2	√
__

	3		
	____	

9
	 	

	 d)	 		p __	
2

		

	 e)	 (i)	 		1	_	3			sin	3	x	1	c	 (ii)	 		1	_	3		

	 f)	 arccos			
	√

__
	7		
	___	

3
	 		<	0.491

10	 c)	 3.696		72	 d)	 	∫ 
	0

		
p

	(p	1	x 	cos	x)dx 	

	 e)	 p	2	2	2	<	7.869		60

11	 a)	 (i)	 10x	1	1	2	e	2x	 (ii)	 		ln	5	___	
2

	 		<	0.805

	 b)	 (i)	 f	21(x)	5			
ln	(x	2	1)

	________	
2

	 	

	 c)	 v	5	p		∫ 
0
		
ln	2

	(1	1	e	2x)2	dx 

12 
	  
π 2

15
a5 + 2

3
a3( )

13 

	  

4 2
5

1
2

x + 1( )
5
2

2 2
3

1
2

x + 1( )
3
2







 + c

14  a =	2			56	___	
27

			 15 
 	  
π
2

e 2k 21( )
16  k	=	2	 17  1800	m

18 
	 
2a	by	 2

3
a2

	
19  a)	 	  ln x + 12k 	 b)	

	 
x > 1

e

	 c)	 (ii)	
	 
ek , 0( )

	
d)	

	 

e 2k

4
  e)	

  
y = x 2ek

	
f)	 Verify

  g)	 Common	ratio	=	e

20 
	  
x 2 2 4y 2 = 4

	
21 

	 
v = v

0

2 + 4k
m

22  a)	

	 	 x

y

Q R

P

y = f(x)

y = g(x)

p

A

1

2

10

  b)	 Proof	 c)	 0.6937

  d)	
	  

e2x 2

2 e2x 2

21( )( )dx
0

p

∫ ≈ 0.467

23  a)	 Verify

  b)	
	 
2π
9

; 4π
9

; 6π
9

	
c)	

	  
nπ
9

n + 1( )
24  a)	 t =	0,	3,	or	6

  b)	 (i)	
	  

t sin π
3( )tdt

0

6

∫ 		 (ii)			11.5	m

25  a)	 0.435  b)	

	  

22t

2 + t 2( )2

26  a)	

	 

dy

dx
= 2x 2

1 + x 2
+ 2 1 + x 2

  b)	 Verify	    c)				k	=	0.918

27  6	m	 
28  0.852
29  a)	 Verify
  a)	 (i)	 A	=	78;	

	 
k = 1

15
ln 48

78
	 (ii)	 45.3

30 
	 
y = tan ln x

2( )
31 

	  

x + 2( )2

2
26 x + 2( ) + 12 ln x + 2 + 8

x + 2
+ c
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32  a)	

	 	

x

y

�4

�6

�2

0

2

4

f(x)

A

g(x)

6

�4 �2 21 4 6�3 �1 3 5

  b)	 (i)	 x	=	23;	
	 	 (ii)	

	  
x 2 int = e 2 23; y 2 int = ln 32 2

  c)	 21.34;	3.05	

  d)	 (ii)	
	  

4 2 12 x( )2
2 ln x + 3( )2 2( )( )dx

0

3.05

∫
	 	 (iii)	 10.6

  e)	 4.63
33  a)  Verify
  b)	

	  
ln x 2 1

2
ln x 2 + 1( ) + c

  c)	
 	 
y = 2e θ

e 2 θ + 1

Chapter 17
Exercise 17.1
  1  a)	 Discrete	 b)	 Continuous	 c)	 Continuous
	 d)	 Discrete	 e)	 Continuous	 f)	 Continuous
	 g)	 Discrete	 h)	 Continuous	 i)	 Continuous
	 j)	 Discrete	 k)	 Continuous	 l)	 Continuous
	 m)	 Discrete
  2  a)	 0.4
	 b)	

	 	
0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

	 c)	 1.85,	1.19	 e)	 2.85,	1.19
	 f)	 E(X	+	b)	=	E(X)	+	b;	V(X	+	b)	=	V(X)

  3  a)	 0.26	 b)	 0.37	 c)	 0.77
	 d)	 16.29	 e)	 8.126	 f)	 4.125;	2.013	25
	 g)	 E(aX	+	b)	=	aE(X)	+	b;	V(aX	+	b)	=	a2V(X)
  4  a)	 0.969	 b)	 0.163	 c)	 3.5
  5  k	=			1	__	30		

x 12 14 16 18

P(X	=	x) 6k 7k 8k 9k

  6  a)	 k	=			1	__	10			 b)	 		37
	__	60			 c)	 		19

	__	30		

	 d)	 E(X)	=	16,	SD	=	7	 																							e)	 E(Y)	=			11	___	5		;	SD	=			7	__	5		

  7  a)	 		1	__	50			
	 b)	

	 	
0.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4

	 c)	 		17
	__	25		

	 d)	 µ	=	1.2;	var	=	0.9
  8  a)	 P(x	=	18)	=	0.2,	P(x =	19)	=	0.1,	symmetric	distribution.
	 b)	 µ	=	17,	SD	=	1.095
  9  a)	 µ	=	1.9,	SD	=	1.34
	 b)	 Between	0	and	5
10  k	=	0.667,	E(X)	=	5.44
11  a)	 k	=	0.3	or	0.7
	 b)	 for	k	=	0.3:	E(X)	=	2.18;	for	k	=	0.7:	E(X)	=	1.78

12  a)

y 0 1 2 3

P(Y	=	y) 1	
__27	 2	

_9	 4	
_9	 8	

__27	
	 b)	 2
13  a)	 k =			1	__	10			 b)	 		1	_	2		
14  a)	 <See	table	below>
	 b)	 0.85	 c)	 0.15	 d)	 48.87
	 e)	 2.057	 f)	 0.77

x 45 46 47 48 49 50 51 52 53 54 55

CDF 0.05 0.13 0.25 0.4 0.65 0.85 0.9 0.94 0.97 0.99 1

15  a)	

x 0 1 2 3 4 5 6

CDF 0.08 0.23 0.45 0.72 0.92 0.97 1

	 b)	 0.72	 c)	 0.97
	 d)	 2.63	 e)	 1.44
16  a)	 0.90	 b)	 0.09	 c)	 0.009
	 d)	 Unacceptable,	acceptable	 e)	 p(x)	=	(0.1x 2 1)	3 0.90
17  a)	 0	 b)	 0.81	 c)	 0.162
	 d)	 Either	acceptable	or	unacceptable,	acceptable
	 e)	 (x 2	1)	(0.1x 2 2)	3 0.902,	x	>	1
18  n =	30
19  a)	 (i)	 		1	_	9			 (ii)	 		1	__	81		

	 b)	 (i)	 		73
	___	648			 (ii)	 		575

	___	1296		


