Complex numbers 21.04 [56 marks]

Let $z=a+b{
m i}$, a, $b\in \mathbb{R}^+$ and let $rg \, z= heta.$

1a. Show the points represented by z and z - 2a on the following Argand [1 mark] diagram.

1b. Find an expression in terms of heta for rg(z-2a).

[1 mark]

¹c. Find an expression in terms of θ for $\arg\left(\frac{z}{z-2a}\right)$.

H	ence or otherwise find the value of $ heta$ for which $\operatorname{Re}\left(rac{z}{z-2a} ight)=0.$

2a. Find the roots of the equation $w^3 = 8i$, $w \in \mathbb{C}$. Give your answers in [4 marks] Cartesian form.

2b. One of the roots w_1 satisfies the condition $\operatorname{Re}(w_1) = 0$. [3 marks] Given that $w_1 = \frac{z}{z-i}$, express z in the form a + bi, where $a, b \in \mathbb{Q}$.

3a. Find the roots of $z^{24} = 1$ which satisfy the condition $0 < \arg(z) < \frac{\pi}{2}$ [5 marks], expressing your answers in the form $re^{i\theta}$, where $r, \theta \in \mathbb{R}^+$.

. .

Let *S* be the sum of the roots found in part (a).

3b. Show that $\operatorname{Re} S = \operatorname{Im} S$.

E.

[4 marks]

Sc.	By writing $\frac{\pi}{12}$ as $\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$, find the value of $\cos \frac{\pi}{12}$ in the form $\frac{\sqrt{a} + \sqrt{b}}{c}$ [3 marks], where a, b and c are integers to be determined.
3c.	By writing $\frac{\pi}{12}$ as $\left(\frac{\pi}{4}-\frac{\pi}{6}\right)$, find the value of $\cos\frac{\pi}{12}$ in the form $\frac{\sqrt{a}+\sqrt{b}}{c}$ [3 marks], where a, b and c are integers to be determined.
Sc.	By writing $\frac{\pi}{12}$ as $\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$, find the value of $\cos \frac{\pi}{12}$ in the form $\frac{\sqrt{a} + \sqrt{b}}{c}$ [3 marks], where a, b and c are integers to be determined.
Sc.	By writing $\frac{\pi}{12}$ as $\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$, find the value of $\cos \frac{\pi}{12}$ in the form $\frac{\sqrt{a} + \sqrt{b}}{c}$ [3 marks], where a, b and c are integers to be determined.
3c.	By writing $\frac{\pi}{12}$ as $(\frac{\pi}{4} - \frac{\pi}{6})$, find the value of $\cos \frac{\pi}{12}$ in the form $\frac{\sqrt{a}+\sqrt{b}}{c}$ [3 marks], where a, b and c are integers to be determined.
3c.	By writing $\frac{\pi}{12}$ as $\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$, find the value of $\cos \frac{\pi}{12}$ in the form $\frac{\sqrt{a} + \sqrt{b}}{c}$ [3 marks], where a, b and c are integers to be determined.
3c.	By writing $\frac{\pi}{12}$ as $(\frac{\pi}{4} - \frac{\pi}{6})$, find the value of $\cos \frac{\pi}{12}$ in the form $\frac{\sqrt{a} + \sqrt{b}}{c}$ [3 marks], where a, b and c are integers to be determined.

^{3d.} Hence, or otherwise, show that $S = \frac{1}{2} \left(1 + \sqrt{2} \right) \left(1 + \sqrt{3} \right) (1 + i).$

Consider $w = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$

4b. Sketch on an Argand diagram the points represented by w^0 , w^1 , w^2 and [2 marks] w^3 .

These four points form the vertices of a quadrilateral, Q.

4c.	Show that the area of the quadrilateral Q is $rac{21\sqrt{3}}{2}$.	[3 marks]

4d. Let $z = 2\left(\cos\frac{\pi}{n} + i\sin\frac{\pi}{n}\right), n \in \mathbb{Z}^+$. The points represented on an *[6 marks]* Argand diagram by $z^0, z^1, z^2, \ldots, z^n$ form the vertices of a polygon P_n . Show that the area of the polygon P_n can be expressed in the form $a(b^n - 1)\sin\frac{\pi}{n}$, where $a, b \in \mathbb{R}$.

Consider the complex number $z = \frac{2+7\mathrm{i}}{6+2\mathrm{i}}$.

5a. Express z in the form $a+\mathrm{i}b$, where $a,\,b\in\mathbb{Q}.$

[2 marks]

5b. Find the exact value of the modulus of z.

[2 marks]

5c. Find the argument of z, giving your answer to 4 decimal places. [2 marks]

Consider the complex numbers $z_1 = 1 + \sqrt{3}i$, $z_2 = 1 + i$ and $w = \frac{z_1}{z_2}$.

6a. By expressing z_1 and z_2 in modulus-argument form write down the [3 marks] modulus of w;

6b. By expressing z_1 and z_2 in modulus-argument form write down the *[1 mark]* argument of w.

6c. Find the smallest positive integer value of n, such that w^n is a real [2 marks] number.

© International Baccalaureate Organization 2023

Printed for 2 SPOLECZNE LICEUM