= \$298468 Note: Only accept answers to the nearest do (b) attempt to look for a pattern by consider recognising a geometric series with first EITHER $P + 1.02P + + 1.02^{19}P (= P(1 + 1.02))$ OR explicitly identify $u_1 = P$, $r = 1.02$ and n THEN $S_{20} = \frac{(1.02^{20} - 1)P}{(1.02 - 1)}$ (c) 24.297 $P = 298468$ P = 12284	A1 lar. Accept \$298469. Ing 1 year, 2 years <i>etc</i> (M1) erm P and common ratio 1.02 (M1) $+ \dots + 1.02^{19}$) A1	[3 marks]
Note: Only accept answers to the nearest do (b) attempt to look for a pattern by consider recognising a geometric series with first EITHER $P + 1.02P + + 1.02^{19}P (= P(1 + 1.02))$ OR explicitly identify $u_1 = P$, $r = 1.02$ and n THEN $S_{20} = \frac{(1.02^{20} - 1)P}{(1.02 - 1)}$ (c) $24.297P = 298468$ P = 12284	Iar. Accept \$298469.Ing 1 year, 2 years etc(M1)erm P and common ratio 1.02(M1) $+ \dots + 1.02^{19}$)A1	[3 marks]
(b) attempt to look for a pattern by consider recognising a geometric series with first EITHER $P + 1.02P + + 1.02^{19}P (= P(1 + 1.02))$ OR explicitly identify $u_1 = P$, $r = 1.02$ and n THEN $S_{20} = \frac{(1.02^{20} - 1)P}{(1.02 - 1)}$ (c) $24.297P = 298468$ P = 12284	$\begin{array}{l} \text{mg 1 year, 2 years } etc & (M1) \\ \text{erm } P \text{ and common ratio } 1.02 & (M1) \\ + \ldots + 1.02^{19} \end{pmatrix} \end{array}$	
EITHER $P + 1.02P + + 1.02^{19}P (= P(1 + 1.02))$ OR explicitly identify $u_1 = P$, $r = 1.02$ and n THEN $S_{20} = \frac{(1.02^{20} - 1)P}{(1.02 - 1)}$ (c) 24.297 $P = 298468$ P = 12284	$+ + 1.02^{19}))$ A1	
$P + 1.02P + + 1.02^{19}P (= P(1 + 1.02))$ OR explicitly identify $u_1 = P$, $r = 1.02$ and n THEN $S_{20} = \frac{(1.02^{20} - 1)P}{(1.02 - 1)}$ (c) 24.297 $P = 298468$ $P = 12284$	$+ + 1.02^{19}))$ A1	
OR explicitly identify $u_1 = P$, $r = 1.02$ and n THEN $S_{20} = \frac{(1.02^{20} - 1)P}{(1.02 - 1)}$ (c) $24.297P = 298468$ P = 12284		
explicitly identify $u_1 = P$, $r = 1.02$ and n THEN $S_{20} = \frac{(1.02^{20} - 1)P}{(1.02 - 1)}$ (c) 24.297 $P = 298468$ P = 12284		
THEN $S_{20} = \frac{(1.02^{20} - 1)P}{(1.02 - 1)}$ (c) 24.297P = 298468 P = 12284	= 20 (may be seen as S_{20}). A1	
(c) $S_{20} = \frac{(1.02^{20} - 1)P}{(1.02 - 1)}$ $P = 298468$ $P = 12284$		
(c) $24.297P = 298468$ P = 12284	AG	
(c) $24.297P = 298468$ P = 12284		[3 marks]
P = 12264	(M1)(A1)	
Note: Accept answers which round to 12284	A1	[3 marks]

$$Q = \frac{5000(1 + 1.028 + 1.028 + 1.028 + 1.028 + ... + 1.028)}{1.028^{n}}$$

$$A1$$

$$= \frac{5000}{1.028} + \frac{5000}{1.028^{2}} + ... + \frac{5000}{1.028^{n}}$$

$$AG$$

continued...

Question 12 continued

METHOD 2

the initial value of the first withdrawal is $\frac{5000}{1.028}$	A1	
the initial value of the second withdrawal is $rac{5000}{1.028^2}$	R1	
the investment required for these two withdrawals is $\frac{5000}{1.028} + \frac{1}{1000}$	$\frac{5000}{.028^2}$ R1	
$Q = \frac{5000}{1.028} + \frac{5000}{1.028^2} + \dots + \frac{5000}{1.028^n}$	AG	
(ii) sum to infinity is $\frac{\frac{5000}{1.028}}{1 - \frac{1}{1.028}}$	(M1)(A1)	
= 1785/1.428 so minimum amount is \$178572	A1	
Note: Accept answers which round to \$178571 or \$178572.		[6 marks]

Total [15 marks]