12.	(a)	$A_1 = 1.004 x$	A1
		$A_2 = 1.004 \left(1.004 x + x \right)$	A1
		$= 1.004^2 x + 1.004 x$	AG

Note: Accept an argument in words for example, first deposit has been in for two months and second deposit has been in for one month. [2 marks]

(b) (i)
$$A_3 = 1.004 (1.004^2 x + 1.004 x + x) = 1.004^3 x + 1.004^2 x + 1.004 x$$
 (M1)A1
 $A_4 = 1.004^4 x + 1.004^3 x + 1.004^2 x + 1.004 x$ A1

(ii)
$$A_{120} = (1.004^{120} + 1.004^{119} + ... + 1.004)x$$
 (A1)

$$=\frac{1.004^{120}-1}{1.004-1}\times 1.004x$$
 M1A1

$$= 251(1.004^{120} - 1)x$$
 AG

[6 marks]

[1 mark]

(c)
$$A_{216} = 251(1.004^{216} - 1)x \left(=x \sum_{t=1}^{216} 1.004^t\right)$$
 A1

(d)
$$251(1.004^{216}-1)x = 20000 \Rightarrow x = 58.22...$$
 (A1)(M1)(A1)
Note: Award (A1) for $251(1.004^{216}-1)x > 20000$, (M1) for attempting to solve
and (A1) for $x > 58.22...$
 $x = 59$ A1
Note: Accept $x = 58$. Accept $x \ge 59$.
[4 marks]
(e) $r = 1.004^{12}$ (= 1.049...) (M1)
 $15000 r^n - 1000 \frac{r^n - 1}{r - 1} = 0 \Rightarrow n = 27.8...$ (A1)(M1)(A1)

Note: Award (A1) for the equation (with their value of r), (M1) for attempting to solve for *n* and **(A1)** for n = 27.8...A1

$$n = 28$$

Note: Accept n = 27.

[5 marks]

Total [18 marks]