Related rates [69 marks]

A water trough which is 10 metres long has a uniform cross-section in the shape of a semicircle with radius 0.5 metres. It is partly filled with water as shown in the following diagram of the cross-section. The centre of the circle is O and the angle KOL is θ radians.

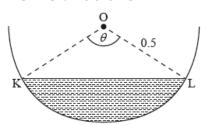
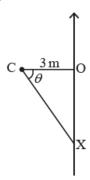


diagram not to scale

1a. ¡	Fir ter	nd	6	n	(£	e>	(p	r	e	S	S	ic	r	1	f	0	r	t	h	e	•	V	0	ılı	u	n	n	E	5	0	f	١	W	а	t	e	r	Ţ	7	(r	n	3)	i	n	1	r	16	5	tr	C	u	ıg	ιŀ	1	ir	1					[.	3	1	n	a	rk	ks	j
ι Γ	.er	11	15	()	0	_								_							_																																				_	_	_	_	 _			_	_		_		


The volume of water is increasing at a constant rate of $0.0008 m^3 s^{-1}$.

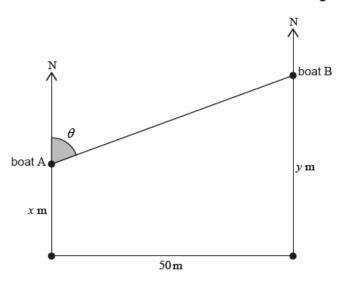
1b. Calculate $\frac{\mathrm{d}\theta}{\mathrm{d}t}$ when $\theta=\frac{\pi}{3}$.

[4 marks]

2. A camera at point C is 3 m from the edge of a straight section of road as $[6 \ marks]$ shown in the following diagram. The camera detects a car travelling along the road at t=0. It then rotates, always pointing at the car, until the car passes O, the point on the edge of the road closest to the camera.

A car travels along the road at a speed of 24 ms⁻¹. Let the position of the car be X and let $O\hat{C}X = \theta$.

Find $\frac{\mathrm{d}\theta}{\mathrm{d}t}$, the rate of rotation of the camera, in radians per second, at the instant the car passes the point O .



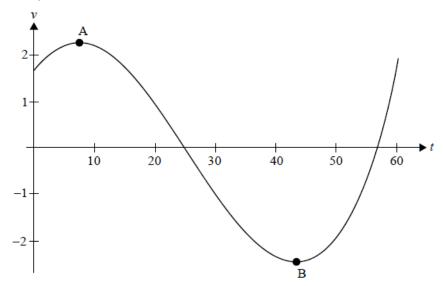
Two boats A and B travel due north.

Initially, boat B is positioned 50 metres due east of boat A.

The distances travelled by boat A and boat B, after t seconds, are x metres and y metres respectively. The angle θ is the radian measure of the bearing of boat B from boat A. This information is shown on the following diagram.

За.	Show	that y	= x	+ 50	\cot	θ	
-----	------	----------	-----	------	--------	----------	--

[1 mark]


nd the spee	d of boat A a	t time T .		

The curve C has equation $\mathrm{e}^{2y}=x^3+y$.

now that $rac{\mathrm{d}y}{\mathrm{d}x}=rac{3x^2}{2\mathrm{e}^{2y}-1}.$	[3 ma
	o the y -axis. [4 m
	the y -axis. [4 ma
	the y -axis. [4 ma
	the y -axis. [4 ma
	the y -axis. [4 magnetic]
e tangent to C at the point P is parallel to x -coordinate of P.	
nd the x -coordinate of P.	
nd the x-coordinate of P.	
nd the x-coordinate of P.	

A body moves in a straight line such that its velocity, $v\,\mathrm{ms}^{-1}$, after t seconds is given by $v=2\sin\left(\frac{t}{10}+\frac{\pi}{5}\right)\csc\left(\frac{t}{30}+\frac{\pi}{4}\right)$ for $0\leqslant t\leqslant 60$.

The following diagram shows the graph of v against t. Point A is a local maximum and point B is a local minimum.

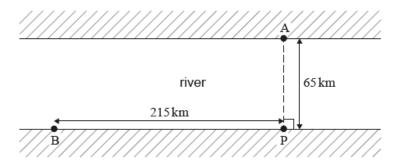
5a. Determine the coordinates of point A and the coordinates of point B. [4 marks]

5b.	Hence, write down the maximum speed of the body.	[1 mark]
	The body first comes to rest at time $t=t_1.$ Find	
5c.	the value of $t_1.$	[2 marks]
5d.	the distance travelled between $t=0$ and $t=t_1.$	[2 marks]

the acceleration when $t=t_1. $	[2 mark
Find the distance travelled in the first 30 seconds.	[3 mar
Find the distance travelled in the first 30 seconds.	[3 mar
Find the distance travelled in the first 30 seconds.	[3 mar
Find the distance travelled in the first 30 seconds.	[3 mar.
Find the distance travelled in the first 30 seconds.	[3 mar.
Find the distance travelled in the first 30 seconds.	[3 man
Find the distance travelled in the first 30 seconds.	[3 mar
Find the distance travelled in the first 30 seconds.	[3 mar
Find the distance travelled in the first 30 seconds.	[3 mar.
Find the distance travelled in the first 30 seconds.	[3 mar.

a. [Determine the first time t_1 at which P has zero velocity.	[2 marks
b. F	Find an expression for the acceleration of P at time $\it t$.	[2 mark.
c. F	Find the value of the acceleration of P at time t_1 .	[1 mar
c. F	Find the value of the acceleration of P at time t_1 .	
c. F		
c. F		[1 mar

Xavier, the parachutist, jumps out of a plane at a height of h metres above the ground. After free falling for 10 seconds his parachute opens. His velocity, $v\,\mathrm{ms}^{-1}$, t seconds after jumping from the plane, can be modelled by the function


$$v(t) = \left\{ egin{array}{ll} 9.8t, & 0 \leqslant t \leqslant 10 \ rac{98}{\sqrt{1 + (t - 10)^2}}, & t > 10 \end{array}
ight.$$

Find his velocity when $t=15$.	[2 marks

7b. Calculate the vertical distance Xavier travelled in the first 10 seconds. [2 marks]

His velocity when he reaches the ground is $2.8 \mathrm{ms}^{-1}$. 7c. Determine the value of h. [5 marks] Points A and P lie on opposite banks of a river, such that AP is the shortest distance across the river. Point B represents the centre of a city which is located on the riverbank. PB=215~km, AP=65~km and $A\widehat{P}B=90\,^{\circ}$.

The following diagram shows this information.

A boat travels at an average speed of $42~km\,h^{-1}$. A bus travels along the straight road between P and B at an average speed of $84~km\,h^{-1}$.

[2 marks]

Find the travel time, in hours, from \boldsymbol{A} to \boldsymbol{B} given that

8a. the boat is taken from A to P, and the bus from P to B.

e boat tra	vels directly t	to B.		[2 m
e boat tra	vels directly t	to B.	 	[2 m
e boat tra	vels directly t	to B.	 	[2 m
e boat tra	vels directly t	to B.	 	[2 m
boat tra	vels directly t	to B.		[2 m.
e boat tra	vels directly t	to B.		[2 m

pus	sing through ${ m D.}$	

Find the value of x so that T is a minimum.	[2 marks
Write down the minimum value of $T.$	[1 mar

An excursion involves renting the boat and the bus. The cost to rent the boat is \$~200 per hour, and the cost to rent the bus is \$~150 per hour.

g. W	rite down the minimum total cost for this journey.	[1 mark
1		

Printed for 2 SPOLECZNE LICEUM