Related rates [69 marks]

A water trough which is 10 metres long has a uniform cross-section in the shape of a semicircle with radius 0.5 metres. It is partly filled with water as shown in the following diagram of the cross-section. The centre of the circle is O and the angle KOL is θ radians.

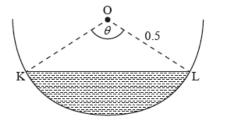
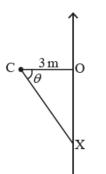


diagram not to scale

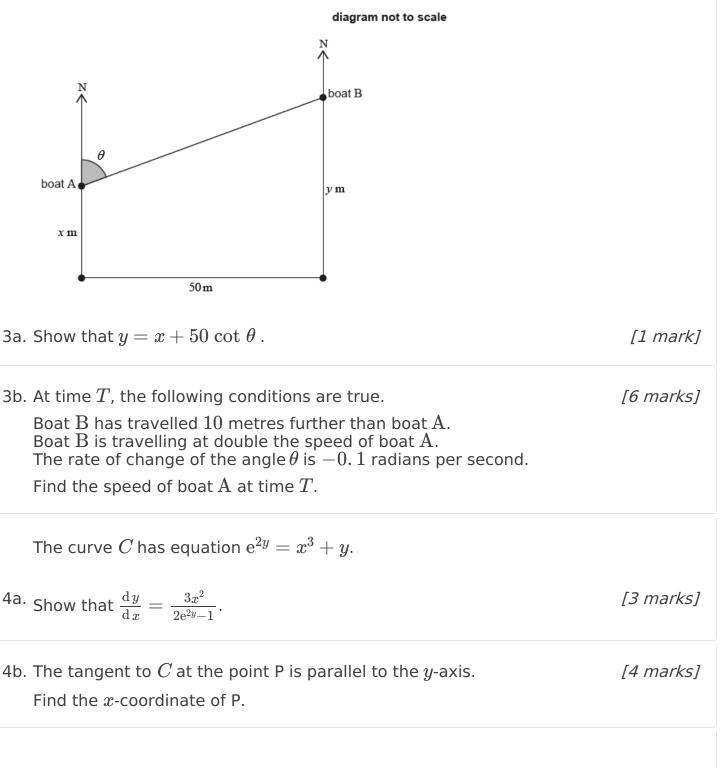

1a. Find an expression for the volume of water $V(m^3)$ in the trough in [3 marks] terms of θ .

The volume of water is increasing at a constant rate of $0.0008 \text{m}^3 \text{s}^{-1}$.

^{1b.} Calculate
$$\frac{\mathrm{d}\theta}{\mathrm{d}t}$$
 when $\theta = \frac{\pi}{3}$.

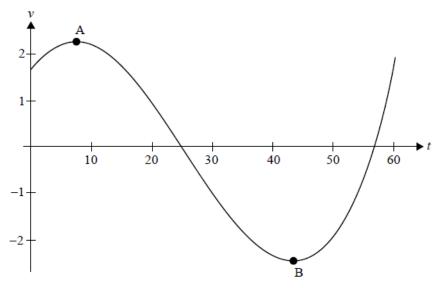
[4 marks]

2. A camera at point C is 3 m from the edge of a straight section of road as [6 marks] shown in the following diagram. The camera detects a car travelling along the road at t = 0. It then rotates, always pointing at the car, until the car passes O, the point on the edge of the road closest to the camera.


A car travels along the road at a speed of 24 ms⁻¹. Let the position of the car be X and let $O\hat{C}X = \theta$.

Find $\frac{d\theta}{dt}$, the rate of rotation of the camera, in radians per second, at the instant the car passes the point O.

Two boats \boldsymbol{A} and \boldsymbol{B} travel due north.


Initially, boat B is positioned $50\ \text{metres}$ due east of boat A.

The distances travelled by boat A and boat B, after t seconds, are x metres and y metres respectively. The angle θ is the radian measure of the bearing of boat B from boat A. This information is shown on the following diagram.

A body moves in a straight line such that its velocity, $v \,\mathrm{ms}^{-1}$, after t seconds is given by $v = 2\sin\left(\frac{t}{10} + \frac{\pi}{5}\right)\csc\left(\frac{t}{30} + \frac{\pi}{4}\right)$ for $0 \leqslant t \leqslant 60$.

The following diagram shows the graph of v against t. Point A is a local maximum and point B is a local minimum.

5a. Determine the coordinates of point A and the coordinates of point B. *[4 marks]*

5b. Hence, write down the maximum speed of the body.	[1 mark]
The body first comes to rest at time $t=t_1.$ Find	

5c. the value of t_1 .	[2 marks]

[2 marks]

[2 marks]

[3 marks]

5d. the distance travelled between t=0 and $t=t_1.$

5e. the acceleration when $t=t_1.$

5f. Find the distance travelled in the first 30 seconds.

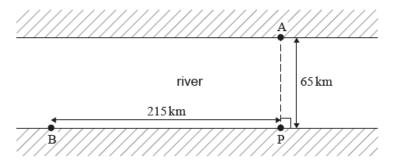
A point P moves in a straight line with velocity $v \text{ ms}^{-1}$ given by $v(t) = e^{-t} - 8t^2e^{-2t}$ at time t seconds, where $t \ge 0$.

•		
6c. Find the value of t	the acceleration of P at time t_1 .	[1 mark]
ground. After free	nutist, jumps out of a plane at a height of h falling for 10 seconds his parachute opens mping from the plane, can be modelled by t	. His velocity, $v{ m ms}^{-1}$,
$y(t) = \int \frac{9.8t}{98}$	$0\leqslant t\leqslant 10$	
n(t) - J = 08		

$$v(t) = \left\{ egin{array}{c} 98 \ \overline{\sqrt{1 + (t-10)^2}}, & t > 10 \end{array}
ight.$$

7a. Find his velocity when t = 15.

7b. Calculate the vertical distance Xavier travelled in the first 10 seconds. [2 marks]


His velocity when he reaches the ground is $2.8 \mathrm{ms}^{-1}$.

6b. Find an expression for the acceleration of P at time t.

7c. Determine the value of h.

Points A and P lie on opposite banks of a river, such that AP is the shortest distance across the river. Point B represents the centre of a city which is located on the riverbank. $PB=215~km,\,AP=65~km$ and $A\widehat{P}B=90°$.

The following diagram shows this information.

A boat travels at an average speed of $42~kmh^{-1}$. A bus travels along the straight road between P and B at an average speed of $84~kmh^{-1}$.

Find the travel time, in hours, from \boldsymbol{A} to \boldsymbol{B} given that

8a. the boat is taken from \boldsymbol{A} to $\boldsymbol{P},$ and the bus from \boldsymbol{P} to $\boldsymbol{B}.$

[2 marks]

[5 marks]

[2 marks]

There is a point D, which lies on the road from P to B, such that BD = x km. The boat travels from A to D, and the bus travels from D to B. 8c. Find an expression, in terms of x for the travel time T, from A to B [3 marks] , passing through D. 8d. Find the value of x so that T is a minimum. [2 marks] 8e. Write down the minimum value of T. [1 mark] An excursion involves renting the boat and the bus. The cost to rent the boat is \$200 per hour, and the cost to rent the bus is \$150 per hour. 8f. Find the new value of x so that the total cost C to travel from A to B via [3 marks] D is a minimum. 8g. Write down the minimum total cost for this journey. [1 mark] © International Baccalaureate Organization 2023 International Baccalaureate Baccalauréat International International Baccalaureate ® - Baccalauréat International ® - Bachillerato Internacional ® Bachillerato Internacional Printed for 2 SPOLECZNE LICEUM