		(Total 5 marks)		
evidence of using binomial expansion	(M1)			
<i>e.g.</i> selecting correct term, $a^8b^0 + \binom{8}{1}a^7b + \binom{8}{2}a^6b^2 + \dots$				
evidence of calculating the factors, in any order	A1A1A1			
<i>e.g.</i> 56, $\frac{2^3}{3^3}$, -3^5 , $\binom{8}{5} \left(\frac{2}{3}x\right)^3 (-3)^5$				
$-4032x^3$ (accept = $-4030x^3$ to 3 s.f.)	A1 N2			
		[5]		
2. One of the terms of the expansion of $(x + 2y)^{10}$ is $ax^8 y^2$. Find the value of <i>a</i> . (Total				
Identifying the required term (seen anywhere)	M1			
$eg \binom{10}{8} \times 2^2$				
$\begin{pmatrix} 10\\8 \end{pmatrix} = 45$	(A1)			
$4y^2$, 2 × 2, 4	(A2)			
<i>a</i> = 180	A2 N4	[6]		
		[6]		

3. Consider the expansion of the expression $(x^3 - 3x)^6$.

Find the term in x^3 in the expansion of $\left(\frac{2}{3}x-3\right)^8$.

1.

(a) Write down the number of terms in this expansion.

(b) Find the term in
$$x^{12}$$
.

(Total 6 marks)

(a) 7 tems A1 N1 (b) A valid approach (M1) Correct term chosen $\binom{6}{3}(x^3)^3(-3x)^3$ A1 Calculating $\binom{6}{3} = 20, (-3)^3 = -27$ (A1)(A1)

Find the term in x^4 in the expansion of $\left(3x^2 - \frac{2}{x}\right)^5$. 4.

. .

~ . (Total 6 marks)

evidence of substituting into binomial expansion (M1)
e.g.
$$a^5 + {5 \choose 1} a^4 b + {5 \choose 2} a^3 b^2 + ...$$

identifying correct term for x^4 (M1)
evidence of calculating the factors, in any order A1A1A1
e.g. ${5 \choose 2}$, $27x^6$, $\frac{4}{x^2}$; $10(3x^2)^3 \left(\frac{-2}{x}\right)^2$
Note: Award A1 for each correct factor.
term = $1080x^4$ A1 N2
Note: Award M1M1A1A1A1A0 for 1080 with working shown.

(a) Expand $(2 + x)^4$ and simplify your result. 5.

(b) Hence, find the term in x^2 in $(2 + x)^4 \left(1 + \frac{1}{x^2}\right)$.

(3) (Total 6 marks)

[6]

(3)

(a)	evidence of expanding e.g. $2^4 + 4(2^3)x + 6(2^2)x^2 + 4(2)x^3 + x^4$, $(4 + 4x + x^2)(4 + 4x + x^2)$	M1		
	$(2+x)^4 = 16 + 32x + 24x^2 + 8x^3 + x^4$	A2	N2	
(b)	finding coefficients 24 and 1	(A1)(A1)		
	term is $25x^2$	A1	N3	
				[6]

2

- 6. (a) Expand $(x-2)^4$ and simplify your result.
 - (b) Find the term in x^3 in $(3x + 4)(x 2)^4$.
- (a) evidence of expanding M1 *e.g.* $(x-2)^4 = x^4 + 4x^3(-2) + 6x^2(-2)^2 + 4x(-2)^3 + (-2)^4$ $(x-2)^4 = x^4 - 8x^3 + 24x^2 - 32x + 16$ A2
- $(x-2)^{4} = x^{4} 8x^{3} + 24x^{2} 32x + 16$ (b) finding coefficients, 3×24 (= 72), $4 \times (-8)(=-32)$ (A1)(A1)
 term is $40x^{3}$ A1 N3
- 7. Determine the constant term in the expansion of $\left(x \frac{2}{x^2}\right)^9$.

The constant term will be the term independent of the variable x.

$$\left(x - \frac{2}{x^2}\right)^9 = x^9 + 9x^8 \left(\frac{-2}{x^2}\right) + \dots + \binom{9}{3} x^6 \left(\frac{-2}{x^2}\right)^3 + \dots + \left(\frac{-2}{x^2}\right)^9$$
(M1)

$$\binom{9}{3}x^6\left(\frac{-2}{x^2}\right)^3 = 84x^6\left(\frac{-8}{x^6}\right) \tag{A1}$$

[4]

(Total 6 marks)

(Total 4 marks)

3

(3)

(3)

[6]

(R1)

(b) Express
$$\left(e+\frac{1}{e}\right)^4 + \left(e-\frac{1}{e}\right)^4$$
 as the sum of three terms.

8.

(a) Expand $\left(e + \frac{1}{e}\right)^4$ in terms of e.

(2) (Total 6 marks)

(4)

(a) For finding second, third and fourth terms correctly

(A1)

N4

Second term $\binom{4}{1}e^{3}\left(\frac{1}{e}\right)$, third term $\binom{4}{1}e^{2}\left(\frac{1}{e}\right)^{2}$, fourth term $\binom{4}{1}e\left(\frac{1}{e}\right)^{3}$

For finding first and last terms, and adding them to their three terms

$$\begin{pmatrix} e + \frac{1}{e} \end{pmatrix}^{4} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} e^{4} + \begin{pmatrix} 4 \\ 1 \end{pmatrix} e^{3} \left(\frac{1}{e} \right) + \begin{pmatrix} 4 \\ 2 \end{pmatrix} e^{2} \left(\frac{1}{e} \right)^{2} + \begin{pmatrix} 4 \\ 3 \end{pmatrix} e \left(\frac{1}{e} \right)^{3} + \begin{pmatrix} 4 \\ 4 \end{pmatrix} \left(\frac{1}{e} \right)^{4} \begin{pmatrix} e + \frac{1}{e} \end{pmatrix}^{4} = e^{4} + 4e^{3} \left(\frac{1}{e} \right) + 6e^{2} \left(\frac{1}{e} \right)^{2} + 4e \left(\frac{1}{e} \right)^{3} + \left(\frac{1}{e} \right)^{4} \begin{pmatrix} = e^{4} + 4e^{2} + 6 + \frac{4}{e^{2}} + \frac{1}{e^{4}} \end{pmatrix}$$

(b)
$$\left(e - \frac{1}{e}\right)^4 = e^4 - 4e^3 \left(\frac{1}{e}\right) + 6e^2 \left(\frac{1}{e}\right)^2 - 4e \left(\frac{1}{e}\right)^3 + \left(\frac{1}{e}\right)^4$$

 $\left(= e^4 - 4e^2 + 6 - \frac{4}{e^2} + \frac{1}{e^4}\right)$ (A1)

Adding gives
$$2e^4 + 12 + \frac{2}{e^4}$$

 $\left(\operatorname{accept2}\begin{pmatrix}4\\0\end{pmatrix}e^4 + 2\begin{pmatrix}4\\2\end{pmatrix}e^2\left(\frac{1}{e}\right)^2 + 2\begin{pmatrix}4\\4\end{pmatrix}\left(\frac{1}{e}\right)^4\right)$ A1 N2

IB Questionbank Maths SL

[6]

- 9. Given that $(3 + \sqrt{7})^3 = p + q\sqrt{7}$ where p and q are integers, find (a) p;
 - (b) *q*.

(Total 6 marks)

Using binomial expansion

(M1)

$$(3+\sqrt{7})^3 = 3^3 + \binom{3}{1} 3^2 (\sqrt{7}) + \binom{3}{2} 3 (\sqrt{7})^2 + (\sqrt{7})^3$$
 (A1)

$$= 27 + 27\sqrt{7} + 63 + 7\sqrt{7} \tag{A2}$$

$$(3+\sqrt{7})^3 = 90+34\sqrt{7}$$
 (so $p = 90$, $q = 34$) (A1)(A1)(C3)(C3)

10. Find the coefficient of x^3 in the expansion of $(2 - x)^5$.

(Total 6 marks)

Term involving x^3 is $\begin{pmatrix} 5\\ 3 \end{pmatrix}$ (2) ² (- x) ³	(A1)(A1)(A1)
$\binom{5}{3} = 10$	(A1)
Therefore, term = $-40x^3$	(A1)
\Rightarrow The coefficient is -40	(A1) (C6)
	[6]

11. Consider the expansion of $\left(3x^2 - \frac{1}{x}\right)^9$.

- (a) How many terms are there in this expansion?
- (b) Find the constant term in this expansion.

(Total 6 marks)

(a) 10 (A2) (C2)
(b)
$$(3x^2)^3 \left(-\frac{1}{x}\right)^6$$
 [for correct exponents] (M1)(A1)
 $\begin{pmatrix} 9\\6 \end{pmatrix} 3^3 x^6 \frac{1}{x^6} \left(\text{or } 84 \times 3^3 x^6 \frac{1}{x^6} \right)$ (A1)
constant = 2268 (A1) (C4) [6]

12. When the expression $(2 + ax)^{10}$ is expanded, the coefficient of the term in x^3 is 414 720. Find the value of *a*.

(Total 6 marks)

$$\begin{pmatrix} 10 \\ 3 \end{pmatrix} 2^{7} (ax)^{3} & \left(\operatorname{accept} \begin{pmatrix} 10 \\ 7 \end{pmatrix} \right)$$
 (A1)(A1)(A1)
$$\begin{pmatrix} 10 \\ 3 \end{pmatrix} = 120$$
 (A1)
$$120 \times 2^{7} a^{3} = 414 \ 720$$
 (M1)
$$a^{3} = 27$$
 (A1) (C6)

(A1) (C6)
Note: Award (A1)(A1)(A0) for
$$\binom{10}{3} 2^7 ax^3$$
. If this leads to the

answer a = 27, do not award the final (A1).

[6]