1. Find, in its simplest form, the argument of $(\sin \theta + i (1 - \cos \theta))^2$ where θ is an acute angle.

(Total 7 marks)

$(\sin\theta + i(1 - \cos\theta))^2 = \sin^2\theta - (1 - \cos\theta)^2 + i2\sin\theta(1 - \cos\theta)$	M1A1
Let α be the required argument.	

$$\tan \alpha = \frac{2\sin\theta \left(1 - \cos\theta\right)}{\sin^2\theta - (1 - \cos\theta)^2}$$
M1

$$= \frac{2\sin\theta (1-\cos\theta)}{(1-\cos^2\theta) - (1-2\cos\theta + \cos^2\theta)}$$
(M1)

$$=\frac{2\sin\theta(1-\cos\theta)}{2\cos\theta(1-\cos\theta)}$$
A1

$$= \tan \theta$$
 A1

$$\alpha = \theta$$
 A1

2. (a) Use de Moivre's theorem to find the roots of the equation $z^4 = 1 - i$.

(b) Draw these roots on an Argand diagram.

(c) If z_1 is the root in the first quadrant and z_2 is the root in the second quadrant, find $\frac{z_2}{z_1}$ in the form a + ib.

(4) (Total 12 marks)

[7]

(6)

(2)

(a)
$$z = (1-i)^{\frac{1}{4}}$$

Let $1-i = r(\cos \theta + i \sin \theta)$
 $\Rightarrow r = \sqrt{2}$ A1

$$\theta = -\frac{\pi}{4}$$
 A1

$$z = \left(\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)\right)^{\frac{1}{4}}$$
 M1

$$= \left(\sqrt{2}\left(\cos\left(-\frac{\pi}{4} + 2n\pi\right) + i\sin\left(-\frac{\pi}{4} + 2n\pi\right)\right)\right)^{\frac{1}{4}}$$

= $2^{\frac{1}{8}}\left(\cos\left(-\frac{\pi}{16} + \frac{n\pi}{2}\right) + i\sin\left(-\frac{\pi}{16} + \frac{n\pi}{2}\right)\right)$ M1
= $2^{\frac{1}{8}}\left(\cos\left(-\frac{\pi}{16}\right) + i\sin\left(-\frac{\pi}{16}\right)\right)$

Note: Award M1 above for this line if the candidate has forgotten to add 2π and no other solution given.

$$= 2^{\frac{1}{8}} \left(\cos\left(\frac{7\pi}{16}\right) + i \sin\left(\frac{7\pi}{16}\right) \right)$$
$$= 2^{\frac{1}{8}} \left(\cos\left(\frac{15\pi}{16}\right) + i \sin\left(\frac{15\pi}{16}\right) \right)$$
$$= 2^{\frac{1}{8}} \left(\cos\left(-\frac{9\pi}{16}\right) + i \sin\left(-\frac{9\pi}{16}\right) \right)$$
A2

A2

Note: Award A1 for roots being shown equidistant from the origin and one in each quadrant.

~

A1 for correct angular positions. It is not necessary to see written evidence of angle, but must agree with the diagram.

(c)
$$\frac{z_2}{z_1} = \frac{2^{\frac{1}{8}} \left(\left(\cos \frac{15\pi}{16} \right) + i \sin \left(\frac{15\pi}{16} \right) \right)}{2^{\frac{1}{8}} \left(\left(\cos \frac{7\pi}{16} \right) + i \sin \left(\frac{7\pi}{16} \right) \right)}$$
M1A1
$$= \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$$
(A1)
$$= i$$
($\Rightarrow a = 0, b = 1$)

- Consider the complex geometric series $e^{i\theta} + \frac{1}{2}e^{2i\theta} + \frac{1}{4}e^{3i\theta} + \dots$ 3.
 - Find an expression for z, the common ratio of this series. (a)
 - Show that |z| < 1. (b) (2)
 - (c) Write down an expression for the sum to infinity of this series.
 - (d) (i) Express your answer to part (c) in terms of sin θ and cos θ .
 - (ii) Hence show that

(2)

[12]

(2)

$$\cos\theta + \frac{1}{2}\cos 2\theta + \frac{1}{4}\cos 3\theta + \dots = \frac{4\cos\theta - 2}{5 - 4\cos\theta}.$$

(10) (Total 16 marks)

(a)
$$z = \frac{\frac{1}{2}e^{2i\theta}}{e^{i\theta}}$$
 (M1)

$$z = \frac{1}{2} e^{i\theta}$$
 A1 N2

(b)
$$|z| = \frac{1}{2}$$
 A2
 $|z| < 1$ AG

(c) Using
$$S_{\infty} = \frac{a}{1-r}$$
 (M1)

$$S_{\infty} = \frac{e^{i\theta}}{1 - \frac{1}{2}e^{i\theta}}$$
A1 N2

(d) (i)
$$S_{\infty} = \frac{e^{i\theta}}{1 - \frac{1}{2}e^{i\theta}} = \frac{\operatorname{cis}\theta}{1 - \frac{1}{2}\operatorname{cis}\theta}$$
 (M1)

$$\frac{\cos\theta + i\sin\theta}{1 - \frac{1}{2}(\cos\theta + i\sin\theta)}$$
(A1)

Also
$$S_{\infty} = e^{i\theta} + \frac{1}{2}e^{2i\theta} + \frac{1}{4}e^{3i\theta} + \dots$$

$$= \operatorname{cis} \theta + \frac{1}{2}\operatorname{cis} 2\theta + \frac{1}{4}\operatorname{cis} 3\theta + \dots \qquad (M1)$$

$$S_{\infty} = \left(\cos\theta + \frac{1}{2}\cos2\theta + \frac{1}{4}\cos3\theta + \dots\right) + i\left(\sin\theta + \frac{1}{2}\sin2\theta + \frac{1}{4}\sin3\theta + \dots\right) A1$$

(ii) Taking real parts,

$$cos \theta + \frac{1}{2} cos 2\theta + \frac{1}{4} cos 3\theta + \dots = \operatorname{Re} \left(\frac{\cos \theta + i \sin \theta}{1 - \frac{1}{2} (\cos \theta + i \sin \theta)} \right)$$
A1

$$= \operatorname{Re} \left(\frac{(\cos \theta + i \sin \theta)}{\left(1 - \frac{1}{2} \cos \theta - \frac{1}{2} i \sin \theta\right)} \times \frac{1 - \frac{1}{2} \cos \theta + \frac{1}{2} i \sin \theta}{\left(1 - \frac{1}{2} \cos \theta + \frac{1}{2} i \sin \theta\right)} \right)$$
M1

$$= \frac{\cos \theta - \frac{1}{2} \cos^2 \theta - \frac{1}{2} \sin^2 \theta}{\left(1 - \frac{1}{2} \cos \theta\right)^2 + \frac{1}{4} \sin^2 \theta}$$
A1

$$= \frac{\left(\cos \theta - \frac{1}{2}\right)}{1 - \cos \theta + \frac{1}{4} (\sin^2 \theta + \cos^2 \theta)}$$
A1

$$= \frac{\left(2 \cos \theta - 1\right) + 2}{\left(4 - 4 \cos \theta + 1\right) + 4} = \frac{4(2 \cos \theta - 1)}{2(5 - 4 \cos \theta)}$$
A1

$$= \frac{4 \cos \theta - 2}{5 - 4 \cos \theta}$$
A1
A1

$$= \frac{4 \cos \theta - 2}{5 - 4 \cos \theta}$$
A1

$$= \frac{25}{2}$$

- 4. The roots of the equation $z^2 + 2z + 4 = 0$ are denoted by α and β ?
 - (a) Find α and β in the form $re^{i\theta}$.
 - (b) Given that α lies in the second quadrant of the Argand diagram, mark α and β on an Argand diagram.
 - (c) Use the principle of mathematical induction to prove De Moivre's theorem, which states that $\cos n\theta + i \sin n\theta = (\cos \theta + i \sin \theta)^n$ for $n \in \mathbb{Z}^+$. (8)

(d) Using De Moivre's theorem find
$$\frac{\alpha^3}{\beta^2}$$
 in the form $a + ib$.

(e) Using De Moivre's theorem or otherwise, show that
$$\alpha^3 = \beta^3$$
. (3)

- (f) Find the exact value of $\alpha\beta^* + \beta\alpha^*$ where α^* is the conjugate of α and β^* is the conjugate of β .
- (g) Find the set of values of *n* for which α^n is real.

(3) (Total 31 marks)

(6)

(2)

(4)

(5)

5. Consider
$$\omega = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$$
.

(a) Show that

(i)
$$\omega^3 = 1;$$

(ii) $1 + \omega + \omega^2 = 0$

(ii)
$$1 + \omega + \omega^2 = 0.$$

(5)

(b) (i) Deduce that
$$e^{i\theta} + e^{i\left(\theta + \frac{2\pi}{3}\right)} + e^{i\left(\theta + \frac{4\pi}{3}\right)} = 0.$$

(ii) Illustrate this result for
$$\theta = \frac{\pi}{2}$$
 on an Argand diagram. (4)

(c) (i) Expand and simplify
$$F(z) = (z - 1)(z - \omega)(z - \omega^2)$$
 where z is a complex number.

Solve F(z) = 7, giving your answers in terms of ω . (ii)

(7) (Total 16 marks)

(a)
$$z = \frac{-2 \pm \sqrt{4 - 16}}{2} = -1 \pm i\sqrt{3}$$
 M1

$$-1 + i\sqrt{3} = re^{i\theta} \Longrightarrow r = 2$$
 A1

$$\theta = \arctan \frac{\sqrt{3}}{-1} = \frac{2\pi}{3}$$
 A1

$$-1 - i\sqrt{3} = re^{i\theta} \implies r = 2$$

$$\theta = \arctan \frac{\sqrt{3}}{r} = -\frac{2\pi}{r}$$
 A1

$$r = \arctan \frac{1}{-1} = -\frac{1}{3}$$

$$\Rightarrow \alpha = 2e^{\frac{1}{3}}$$
 A1

$$\Rightarrow \beta = 2e^{-\frac{1}{3}}$$
 A1

(b)

$\cos n\theta + i \sin n\theta = (\cos \theta + i \sin \theta)^n$	
Let $n = 1$	
Left hand side = $\cos 1\theta + i \sin 1\theta = \cos \theta + i \sin \theta$	
Right hand side = $(\cos \theta + i \sin \theta)^1 = \cos \theta + i \sin \theta$	
Hence true for $n = 1$	M1A1
Assume true for $n = k$	M1
$\cos k\theta + i \sin k\theta = (\cos \theta + i \sin \theta)^k$	
$\Rightarrow \cos(k+1)\theta + i\sin(k+1)\theta = (\cos\theta + i\sin\theta)^k(\cos\theta + i\sin\theta)$	M1A1
= $(\cos h\theta + i \sin h\theta)(\cos \theta + i \sin \theta)$	
$= \cos k\theta \cos\theta - \sin k\theta \sin \theta + i(\cos k\theta \sin\theta + \sin k\theta \cos\theta)$	A1
$= \cos(k+1)\theta + i\sin(k+1)\theta$	A1
Hence if true for $n = k$, true for $n = k + 1$	
However if it is true for $n = 1$	
\Rightarrow true for $n = 2$ etc.	R1
\Rightarrow hence proved by induction	
	$\cos n\theta + i \sin n\theta = (\cos \theta + i \sin \theta)^n$ Let $n = 1$ Left hand side $= \cos 1\theta + i \sin 1\theta = \cos \theta + i \sin \theta$ Right hand side $= (\cos \theta + i \sin \theta)^1 = \cos \theta + i \sin \theta$ Hence true for $n = 1$ Assume true for $n = k$ $\cos k\theta + i \sin k\theta = (\cos \theta + i \sin \theta)^k$ $\Rightarrow \cos(k+1)\theta + i \sin(k+1)\theta = (\cos \theta + i \sin \theta)^k(\cos \theta + i \sin \theta)$ $= (\cos k\theta + i \sin k\theta)(\cos \theta + i \sin \theta)$ $= \cos k\theta \cos \theta - \sin k\theta \sin \theta + i(\cos k\theta \sin \theta + \sin k\theta \cos \theta)$ $= \cos(k+1)\theta + i \sin(k+1)\theta$ Hence if true for $n = k$ true for $n = k + 1$ However if it is true for $n = 1$ \Rightarrow true for $n = 2$ etc. \Rightarrow hence proved by induction

A1A1

(d)
$$\frac{\alpha^3}{\beta^2} = \frac{8e^{i2\pi}}{4e^{-i\frac{4\pi}{3}}} = 2e^{i\frac{4\pi}{3}}$$
 A1

$$= 2\cos\frac{4\pi}{3} + 2i\sin\frac{4\pi}{3}$$
(M1)

$$= -\frac{2}{2} - 2\frac{i\sqrt{3}}{2} = -1 - i\sqrt{3}$$
 A1A1

(e)
$$a^3 = 8e^{i2\pi}$$
 A1
 $\beta^3 = 8e^{-i2\pi}$ A1

Since
$$e^{2\pi}$$
 and $e^{-2\pi}$ are the same $\alpha^3 = \beta^3$ R1

(f) **EITHER**

$$\begin{aligned} \alpha &= -1 + i\sqrt{3} & \beta = -1 - i\sqrt{3} \\ \alpha^* &= -1 - i\sqrt{3} & \beta^* = -1 + i\sqrt{3} & A1 \\ \alpha\beta^* &= (-1 + i\sqrt{3})(-1 + i\sqrt{3}) = 1 - 2i\sqrt{3} - 3 = 2 - 2i\sqrt{3} & M1A1 \\ \beta\alpha^* &= (-1 - i\sqrt{3})(-1 - i\sqrt{3}) = 1 + 2i\sqrt{3} - 3 = -2 + 2i\sqrt{3} & A1 \\ \Rightarrow \alpha\beta^* + \beta\alpha^* &= -4 & A1 \end{aligned}$$

OR

Since
$$\alpha^* = \beta$$
 and $\beta^* = \alpha$
 $\alpha\beta^* = 2e^{\frac{i\frac{2\pi}{3}}{3}} \times 2e^{\frac{i\frac{2\pi}{3}}{3}} = 4e^{\frac{i\frac{4\pi}{3}}{3}}$
M1A1
 $\beta\alpha^* = 2e^{-\frac{i\frac{2\pi}{3}}{3}} \times 2e^{-\frac{i\frac{2\pi}{3}}{3}} = 4e^{-\frac{i\frac{4\pi}{3}}{3}}$

$$\beta \alpha^* = 2e^{-3} \times 2e^{-3} = 4e^{-3}$$
A1

$$\alpha \beta^* + \beta \alpha^* = 4 \left(e^{i\frac{4\pi}{3}} + e^{-i\frac{4\pi}{3}} \right)$$

$$= 4 \left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} + \cos\frac{4\pi}{3} - i\sin\frac{4\pi}{3} \right)$$
A1

$$= 8\cos\frac{4\pi}{3} = 8 \times -\frac{1}{2} = -4$$
 A1

(g)
$$\alpha^n = 2^n e^{\frac{i2^{\frac{n}{3}}}{3}}$$
 M1A1
This is real when *n* is a multiple of 3 R1
i.e. $n = 3N$ where $N \in \mathbb{Z}^+$

[31]

6. The complex number z is defined as $z = \cos \theta + i \sin \theta$.

(a) State de Moivre's theorem.

(1)

(b) Show that
$$z^n - \frac{1}{z^n} = 2i \sin(n\theta)$$
. (3)

(c) Use the binomial theorem to expand
$$\left(z - \frac{1}{z}\right)^5$$
 giving your answer in simplified form. (3)

(d) Hence show that
$$16 \sin^5 \theta = \sin 5\theta - 5 \sin 3\theta + 10 \sin \theta$$
.

IB Questionbank Mathematics Higher Level 3rd edition

(4)

(e) Check that your result in part (d) is true for $\theta = \frac{\pi}{4}$. (4)

(f) Find
$$\int_0^{\frac{\pi}{2}} \sin^5 \theta \, \mathrm{d} \theta$$
. (4)

(g) Hence, with reference to graphs of circular functions, find $\int_0^{\frac{\pi}{2}} \cos^5 \theta \, d\theta$, explaining your reasoning. (3)

(Total 22 marks)

(a) any appropriate form, e.g. $(\cos \theta + i \sin \theta)^n = \cos (n\theta) + i \sin (n\theta)$ A1

(b)
$$z^n = \cos n\theta + i \sin n\theta$$
 A1

$$\frac{1}{z^n} = \cos(\neg n\theta) + i\sin(\neg n\theta) \tag{M1}$$

$$= \cos n\theta - i \sin (n\theta)$$
 A1

therefore
$$z^n - \frac{1}{z^n} = 2i\sin(n\theta)$$
 AG

(c)
$$\left(z - \frac{1}{z}\right)^5 = z^5 + {\binom{5}{1}} z^4 \left(-\frac{1}{z}\right) + {\binom{5}{2}} z^3 \left(-\frac{1}{z}\right)^2 + {\binom{5}{3}} z^2 \left(-\frac{1}{z}\right)^3 + {\binom{5}{4}} z \left(-\frac{1}{z}\right)^4 + \left(-\frac{1}{z}\right)^5$$
(M1)(A1)

$$= z^5 - 5z^3 + 10z - \frac{10}{z} + \frac{5}{z^3} - \frac{1}{z^5}$$
A1

(d)
$$\left(z - \frac{1}{z}\right)^5 = z^5 - \frac{1}{z^5} - 5\left(z^3 - \frac{1}{z^3}\right) + 10\left(z - \frac{1}{z}\right)$$
 M1A1

$$(2i \sin \theta)^5 = 2i \sin 5\theta - 10i \sin 3\theta + 20i \sin \theta$$
M1A1 $16 \sin^5 \theta = \sin 5\theta - 5 \sin 3\theta + 10 \sin \theta$ AG

(e)
$$16 \sin^5 \theta = \sin 5\theta - 5 \sin 3\theta + 10 \sin \theta$$

LHS = $16 \left(\sin \frac{\pi}{4} \right)^5$
= $16 \left(\frac{\sqrt{2}}{2} \right)^5$
= $2\sqrt{2} \left(= \frac{4}{\sqrt{2}} \right)$
RHS = $\sin \left(\frac{5\pi}{4} \right) - 5 \sin \left(\frac{3\pi}{4} \right) + 10 \sin \left(\frac{\pi}{4} \right)$
= $-\frac{\sqrt{2}}{2} - 5 \left(\frac{\sqrt{2}}{2} \right) + 10 \left(\frac{\sqrt{2}}{2} \right)$ M1A1

Note: Award M1 for attempted substitution.

$$= 2\sqrt{2} \left(= \frac{4}{\sqrt{2}} \right)$$
 A1

hence this is true for
$$\theta = \frac{\pi}{4}$$
 AG

(f)
$$\int_0^{\frac{\pi}{2}} \sin^5 \theta d\theta = \frac{1}{16} \int_0^{\frac{\pi}{2}} (\sin 5\theta - 5\sin 3\theta + 10\sin \theta) d\theta$$
 M1

$$= \frac{1}{16} \left[-\frac{\cos 5\theta}{5} + \frac{5\cos 3\theta}{3} - 10\cos \theta \right]_{0}^{\frac{\pi}{2}}$$
A1

$$= \frac{1}{16} \left[0 - \left(-\frac{1}{5} + \frac{5}{3} - 10 \right) \right]$$
 A1

$$=\frac{8}{15}$$
A1

(g) $\int_{0}^{\frac{\pi}{2}} \cos^{5} \theta d\theta = \frac{8}{15}$, with appropriate reference to symmetry and graphs.A1R1R1

Note: Award first R1 for partially correct reasoning e.g. sketches of graphs of sin and cos.

Award second R1 for fully correct reasoning involving sin⁵ and cos⁵.

[22]

7. Let
$$w = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$$
.

(a) Show that *w* is a root of the equation $z^5 - 1 = 0$.

(3)

(3)

(b) Show that $(w - 1) (w^4 + w^3 + w^2 + w + 1) = w^5 - 1$ and deduce that $w^4 + w^3 + w^2 + w + 1 = 0$.

(c) **Hence** show that
$$\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$$
.

(6) (Total 12 marks)

(a) EITHER

$$w^{5} = \left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)^{5} \tag{M1}$$

$$= \cos 2\pi + i \sin 2\pi$$
 A1

Hence w is a root of
$$z^5 - 1 = 0$$
 AG

OR

Solving
$$z^5 = 1$$
 (M1)

$$z = \cos \frac{2\pi}{5} n + i \sin \frac{2\pi}{5} n, \quad n = 0, 1, 2, 3, 4.$$
 A1

$$n = 1$$
 gives $\cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$ which is w A1

(b)
$$(w-1)(1+w+w^2+w^3+w^4) = w+w^2+w^3+w^4+w^5-1$$

 $-w-w^2-w^3-w^4$ M1

$$= w^5 - 1$$
 A1

Since
$$w^5 - 1 = 0$$
 and $w \neq 1$, $w^4 + w^3 + w^2 + w + 1 = 0$. R1

(c)
$$1 + w + w^2 + w^3 + w^4 =$$

$$1 + \cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5} + \left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)^2 + \left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)^3 + \left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)^4$$
(M1)

$$1 + \cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5} + \cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5} + \cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5} + \cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5} + \cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}$$
M1

$$1 + \cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5} + \cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5} + \cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5} + \cos\frac{4\pi}{5} - i\sin\frac{4\pi}{5} + \cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}$$
M1A1A1

Notes: Award M1 for attempting to replace 6π and 8π by 4π and 2π Award A1 for correct cosine terms and A1 for correct sine terms.

$$=1+2\cos\frac{4\pi}{5}+2\cos\frac{2\pi}{5}=0$$
 A1

Note: Correct methods involving equating real parts, use of conjugates or reciprocals are also accepted.

$$\cos\frac{2\pi}{5} + \cos\frac{4\pi}{5} = -\frac{1}{2}$$
 AG

Note: Use of cis notation is acceptable throughout this question.

[12]