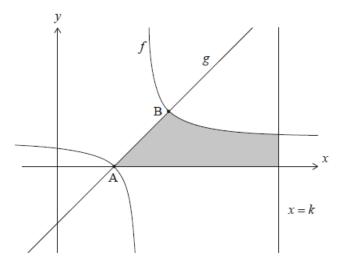

Definite Integrals [113 marks]

The derivative of the function f is given by $f'(x) = rac{6x}{x^2+1}$. [5 marks] 1. The graph of y = f(x) passes through the point (1, 5). Find an expression for f(x).

Consider the functions $f(x)=rac{1}{x-4}+1$, for x
eq 4, and g(x)=x-3 for $x\in\mathbb{R}.$ The following diagram shows the graphs of f and g.



The graphs of f and g intersect at points A and B. The coordinates of A are $(3,\ 0).$

2a. Find the coordinates of $\boldsymbol{B}.$

[5 marks]

In the following diagram, the shaded region is enclosed by the graph of f, the graph of g, the x-axis, and the line x=k, where $k\in\mathbb{Z}.$

The area of the shaded region can be written as $\ln(p)+8$, where $p\in\mathbb{Z}.$

2b. Find the value of k and the value of p.

³. Find the value of $\int_1^9 \left(\frac{3\sqrt{x}-5}{\sqrt{x}} \right) \mathrm{d}\,x.$

Consider
$$f(x) = rac{2x-4}{x^2-1}, -1 < x < 1.$$

4a. Find f'(x).

[2 marks]

4b. Show that, if $f'\left(x
ight)=0$, then $x=2-\sqrt{3}.$

[3 marks]

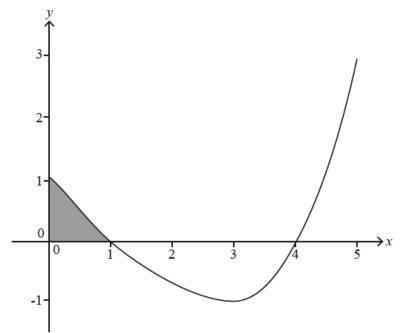
For the graph of y = f(x),

4c. find the coordinates of the y-intercept.

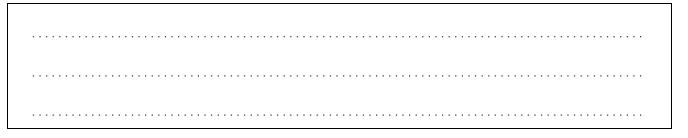
4d. show that there are no x-intercepts.

[2 marks]

[1 mark]


4g. The area enclosed by the graph of y = f(x) and the line y = 4 can be *[7 marks]* expressed as $\ln v$. Find the value of v.

[6 marks]


5. Given that $\int_0^{\ln k} \mathrm{e}^{2x} \mathrm{d}x = 12$, find the value of k.

The graph of y = f'(x), $0 \le x \le 5$ is shown in the following diagram. The curve intercepts the x-axis at (1, 0) and (4, 0) and has a local minimum at (3, -1).

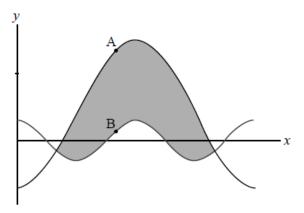
6a. Write down the *x*-coordinate of the point of inflexion on the graph of y = f(x).

The shaded area enclosed by the curve $y=f'\left(x
ight)$, the x-axis and the y-axis is 0.5. Given that $f\left(0
ight)=3$,

6b. find the value of f(1).

[3 marks]

The area enclosed by the curve $y=f'\left(x
ight)$ and the x-axis between x=1 and x=4 is 2.5 .


6c. find the value of f(4).

[2 marks]

6d. Sketch the curve y = f(x), $0 \le x \le 5$ indicating clearly the coordinates [3 marks] of the maximum and minimum points and any intercepts with the coordinate axes.

Consider the functions f and g defined on the domain $0 < x < 2\pi$ by $f(x) = 3\cos 2x$ and $g(x) = 4 - 11\cos x$.

The following diagram shows the graphs of $y=f\left(x
ight)$ and $y=g\left(x
ight)$

7b. Find the exact area of the shaded region, giving your answer in the form [5 marks] $p\pi+q\sqrt{3}$, where $p,\,q\in\mathbb{Q}$.

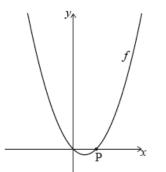
7c. At the points A and B on the diagram, the gradients of the two graphs [6 marks] are equal.

Determine the y-coordinate of A on the graph of g.

Given that $\int_{-2}^{2}f\left(x
ight)\mathrm{d}x=10$ and $\int_{0}^{2}f\left(x
ight)\mathrm{d}x=12$, find

8a. $\int_{-2}^{0} \left(f(x) + 2 \right) \mathrm{d}x.$

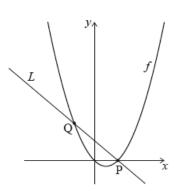
.


[4 marks]

[2 marks]

Let $y = \arccos\left(\frac{x}{2}\right)$

9a. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.


Let $f(x) = x^2 - x$, for $x \in \mathbb{R}$. The following diagram shows part of the graph of f. diagram not to scale

The graph of f crosses the x-axis at the origin and at the point $\mathrm{P}(1,0).$

diagram not to scale

The line L intersects the graph of f at another point Q, as shown in the following diagram.

10. Find the area of the region enclosed by the graph of f and the line L. [6 marks]

[1 mark]

[1 mark]

11b. Factorize $x^2 + 3x + 2$.

Consider the function $f(x)=rac{1}{x^2+3x+2}, x\in \mathbb{R}, x
eq -2, x
eq -1.$

11c. Sketch the graph of f(x), indicating on it the equations of the [5 marks] asymptotes, the coordinates of the y-intercept and the local maximum.

11e. Sketch the graph of y=f(|x|).

[2 marks]

11f. Determine the area of the region enclosed between the graph of y = f(|x|), the x-axis and the lines with equations x = -1 and x = 1.

© International Baccalaureate Organization 2023 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM