Definite Integrals [113 marks]

1. The derivative of the function f is given by $f'(x) = \frac{6x}{x^2+1}$. [5 marks]

The graph of y = f(x) passes through the point (1, 5). Find an expression for f(x).

Markscheme recognizing need to integrate (M1) $\int rac{6x}{x^2+1} \,\mathrm{d}\,x$ or $u=x^2+1$ or $rac{\mathrm{d}\,u}{\mathrm{d}\,x}=2x$ $\int rac{3}{u} \,\mathrm{d}\, u$ OR $3\int rac{2x}{x^2+1} \,\mathrm{d}\, x$ (A1) $= 3 \ln (x^2 + 1)(+c)$ or $3 \ln u(+c)$ **A1** correct substitution of x = 1 and f(x) = 5 or x = 1 and u = 2 into equation using **their** integrated expression (must involve *c*) (M1) $5 = 3 \ln 2 + c$ $f(x) = 3 \ln \left(x^2 + 1\right) + 5 - 3 \ln 2 \ \left(= 3 \ln \left(x^2 + 1\right) + 5 - \ln 8 = 3 \ln \left(rac{x^2 + 1}{2}
ight) + 5
ight)$ (or equivalent) **A1 Note:** Accept the use of the modulus sign in working and the final answer.

[5 marks]

Consider the functions $f(x) = \frac{1}{x-4} + 1$, for $x \neq 4$, and g(x) = x - 3 for $x \in \mathbb{R}$. The following diagram shows the graphs of f and g.

The graphs of f and g intersect at points A and B. The coordinates of A are (3, 0).

[5 marks]

2a. Find the coordinates of B.

Markscheme $\frac{1}{x-4} + 1 = x - 3$ (M1) $x^2 - 8x + 15 = 0$ OR $(x - 4)^2 = 1$ (A1) valid attempt to solve **their** quadratic (M1) (x - 3)(x - 5) = 0 OR $x = \frac{8 \pm \sqrt{8^2 - 4(1)(15)}}{2(1)}$ OR $(x - 4) = \pm 1$ x = 5 (x = 3, x = 5) (may be seen in answer) A1 B(5, 2) (accept x = 5, y = 2) A1

[5 marks]

In the following diagram, the shaded region is enclosed by the graph of f, the graph of g, the x-axis, and the line x=k, where $k\in\mathbb{Z}$.

The area of the shaded region can be written as $\ln(p)+8$, where $p\in\mathbb{Z}.$

2b. Find the value of k and the value of p.

[10 marks]

recognizing two correct regions from x=3 to x=5 and from x=5 to x=k *(R1)*

$$\int_{3}^{k} \int_{3}^{5} \int_{3}^{k} \int_{3}^{k} f(x) dx \text{ OR}$$

$$\int_{3}^{5} f(x) dx \text{ OR}$$

$$\int_{3}^{5} \int_{3}^{k} \int_{(x-3)}^{k} dx + \int_{5}^{5} \left(\frac{1}{x-4} + 1\right) dx$$

area of triangle is 2 OR $\frac{2 \cdot 2}{2}$ OR $\left(\frac{5^{2}}{2} - 3(5)\right) - \left(\frac{3^{2}}{2} - 3(3)\right)$ (A1)
correct integration (A1)(A1)

$$\int \left(\frac{1}{x-4} + 1\right) dx = \ln(x-4) + x (+C)$$

Note: Award **A1** for $\ln(x - 4)$ and **A1** for x. **Note:** The first three **A** marks may be awarded independently of the **R** mark.

substitution of **their** limits (for *x*) into **their** integrated function (in terms of *x*)
(M1)

$$\ln(k-4)+k-(\ln 1+5)$$

 $[\ln(x-4)+x]_5^k = \ln(k-4)+k-5$ A1
adding **their** two areas (in terms of *k*) and equating to $\ln p + 8$ (M1)
 $2 + \ln(k-4)+k-5 = \ln p + 8$
equating **their** non-log terms to 8 (equation must be in terms of *k*) (M1)
 $k-3=8$
 $k=11$ A1
 $11-4=p$
 $p=7$ A1

3. Find the value of $\int_1^9 \left(\frac{3\sqrt{x}-5}{\sqrt{x}} \right) \mathrm{d}\,x.$

[5 marks]

Markscheme

$$\int \frac{3\sqrt{x}-5}{\sqrt{x}} dx = \int (3-5x^{-\frac{1}{2}}) dx$$
 (A1)

 $\int \frac{3\sqrt{x}-5}{\sqrt{x}} dx = 3x - 10x^{\frac{1}{2}}(+c)$
A1A1

 substituting limits into their integrated function and subtracting
 (M1)

 $3(9)-10(9)^{\frac{1}{2}} - (3(1)-10(1)^{\frac{1}{2}})$
 OR $27 - 10 \times 3 - (3-10)$
 $= 4$
 A1

 [5 marks]

Consider
$$f\left(x
ight) = rac{2x-4}{x^2-1}, -1 < x < 1.$$

4a. Find f'(x).

Markscheme attempt to use quotient rule (or equivalent) (M1) $f'(x) = \frac{(x^2-1)(2)-(2x-4)(2x)}{(x^2-1)^2}$ A1 $= \frac{-2x^2+8x-2}{(x^2-1)^2}$ [2 marks]

4b. Show that, if $f'\left(x
ight)=0$, then $x=2-\sqrt{3}.$

[3 marks]

f'(x) = 0simplifying numerator (may be seen in part (i)) *(M1)* $\Rightarrow x^2 - 4x + 1 = 0$ or equivalent quadratic equation *A1*

EITHER

use of quadratic formula

$$\Rightarrow x = rac{4\pm\sqrt{12}}{2}$$
 A1

OR

use of completing the square

$$(x-2)^2 = 3$$
 A1

THEN

 $x=2-\sqrt{3}$ (since $2+\sqrt{3}$ is outside the domain) $igstarrow oldsymbol{AG}$

Note: Do not condone verification that $x = 2 - \sqrt{3} \Rightarrow f'(x) = 0$. Do not award the final **A1** as follow through from part (i).

[3 marks]

For the graph of $y=f\left(x
ight)$,

4c. find the coordinates of the y-intercept.

[1 mark]

4f. Show that $\frac{3}{x+1} - \frac{1}{x-1} = \frac{2x-4}{x^2-1}$.

4g. The area enclosed by the graph of y = f(x) and the line y = 4 can be *[7 marks]* expressed as $\ln v$. Find the value of v.

$$f\left(x
ight)=4\Rightarrow2x-4=4x^2-4$$
 M1 $(x=0 ext{ or)} extsf{ } x=rac{1}{2}$ A1

area under the curve is $\int_{0}^{rac{1}{2}}f\left(x
ight)\mathrm{d}x$ $egin{array}{c} m{ extsf{M1}} \end{array}$

$$=\int_{0}^{rac{1}{2}}rac{3}{x+1}-rac{1}{x-1}\mathrm{d}x$$

Note: Ignore absence of, or incorrect limits up to this point.

$$= [3 \ln |x+1| - \ln |x-1|]_0^{\frac{1}{2}} \quad A\mathbf{1}$$

= $3 \ln \frac{3}{2} - \ln \frac{1}{2}(-0)$
= $\ln \frac{27}{4} \quad A\mathbf{1}$
area is $2 - \int_0^{\frac{1}{2}} f(x) \, dx$ or $\int_0^{\frac{1}{2}} 4 \, dx - \int_0^{\frac{1}{2}} f(x) \, dx \quad M\mathbf{1}$
= $2 - \ln \frac{27}{4}$
= $\ln \frac{4e^2}{27} \quad A\mathbf{1}$
 $\left(\Rightarrow v = \frac{4e^2}{27}\right)$
[7 marks]

^{5.} Given that $\int_0^{\ln k} \mathrm{e}^{2x} \mathrm{d}x = 12$, find the value of k.

[6 marks]

 $\frac{1}{2}e^{2x} \text{ seen } (A1)$ attempt at using limits in an integrated expression $\left(\left[\frac{1}{2}e^{2x}\right]_{0}^{\ln k} = \frac{1}{2}e^{2\ln k} - \frac{1}{2}e^{0}\right) (M1)$ $= \frac{1}{2}e^{\ln k^{2}} - \frac{1}{2}e^{0} (A1)$ Setting their equation = 12 M1
Note: their equation must be an integrated expression with limits substituted. $\frac{1}{2}k^{2} - \frac{1}{2} = 12 A1$ $\left(k^{2} = 25 \Rightarrow\right)k = 5 A1$ Note: Do not award final A1 for $k = \pm 5$.
[6 marks]

The graph of y = f'(x), $0 \le x \le 5$ is shown in the following diagram. The curve intercepts the *x*-axis at (1, 0) and (4, 0) and has a local minimum at (3, -1).

6a. Write down the *x*-coordinate of the point of inflexion on the graph of y = f(x).

Markscheme * This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure. 3 A1 [1 mark]

The shaded area enclosed by the curve y = f'(x), the *x*-axis and the *y*-axis is 0.5. Given that f(0) = 3,

6b. find the value of f(1).

[3 marks]

Markscheme attempt to use definite integral of f'(x) (M1) $\int_{0}^{1} f'(x) dx = 0.5$ f(1) - f(0) = 0.5 (A1) f(1) = 0.5 + 3= 3.5 A1 [3 marks]

The area enclosed by the curve $y=f'\left(x
ight)$ and the x-axis between x=1 and x=4 is 2.5 .

6c. find the value of f(4).

Markscheme $\int_{1}^{4} f'(x) dx = -2.5$ (A1) **Note:** (A1) is for -2.5. f(4) - f(1) = -2.5 f(4) = 3.5 - 2.5 = 1 A1 [2 marks]

6d. Sketch the curve y = f(x), $0 \le x \le 5$ indicating clearly the coordinates [3 marks] of the maximum and minimum points and any intercepts with the coordinate axes.

Consider the functions f and g defined on the domain $0 < x < 2\pi$ by $f(x) = 3\cos 2x$ and $g(x) = 4 - 11\cos x$.

The following diagram shows the graphs of $y=f\left(x
ight)$ and $y=g\left(x
ight)$

7a. Find the *x*-coordinates of the points of intersection of the two graphs. *[6 marks]*

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

 $3\cos 2x = 4 - 11\cos x$ attempt to form a quadratic in $\cos x$ **M1** $3(2\cos^2 x - 1) = 4 - 11\cos x$ **A1** $(6\cos^2 x + 11\cos x - 7 = 0)$ valid attempt to solve their quadratic **M1** $(3\cos x + 7)(2\cos x - 1) = 0$ $\cos x = \frac{1}{2}$ **A1** $x = \frac{\pi}{3}, \frac{5\pi}{3}$ **A1A1 Note:** Ignore any "extra" solutions. **[6 marks]**

7b. Find the exact area of the shaded region, giving your answer in the form [5 marks] $p\pi + q\sqrt{3}$, where $p, q \in \mathbb{Q}$.

Markscheme $\int_{0}^{\frac{5\pi}{3}} \int_{0}^{\frac{5\pi}{3}} (4 - 11 \cos x - 3 \cos 2x) \, dx \quad M1$ $= (\pm) \left[4x - 11 \sin x - \frac{3}{2} \sin 2x \right]_{\frac{\pi}{3}}^{\frac{5\pi}{3}} \quad A1$ Note: Ignore lack of or incorrect limits at this stage. attempt to substitute their limits into their integral M1 $= \frac{20\pi}{3} - 11 \sin \frac{5\pi}{3} - \frac{3}{2} \sin \frac{10\pi}{3} - \left(\frac{4\pi}{3} - 11 \sin \frac{\pi}{3} - \frac{3}{2} \sin \frac{2\pi}{3}\right)$ $= \frac{16\pi}{3} + \frac{11\sqrt{3}}{2} + \frac{3\sqrt{3}}{4} + \frac{11\sqrt{3}}{2} + \frac{3\sqrt{3}}{4}$ $= \frac{16\pi}{3} + \frac{25\sqrt{3}}{2} \quad A1A1$ [5 marks]

7c. At the points A and B on the diagram, the gradients of the two graphs [6 marks] are equal.

M1

Determine the y-coordinate of A on the graph of g.

Markscheme

attempt to differentiate both functions and equate $-6 \sin 2x = 11 \sin x$ **A1** attempt to solve for x **M1** $11 \sin x + 12 \sin x \cos x = 0$ $\sin x (11 + 12 \cos x) = 0$ $\cos x = -\frac{11}{12} (\text{or } \sin x = 0)$ **A1** $\Rightarrow y = 4 - 11 \left(-\frac{11}{12}\right)$ **M1** $y = \frac{169}{12} \left(= 14\frac{1}{12}\right)$ **A1 [6 marks]**

Given that
$$\int_{-2}^{2}f\left(x
ight)\mathrm{d}x=10$$
 and $\int_{0}^{2}f\left(x
ight)\mathrm{d}x=12$, find

8a. $\int_{-2}^{0} \left(f(x) + 2 \right) \mathrm{d}x.$

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

 $\int_{-2}^{0} f(x) dx = 10 - 12 = -2 \quad (M1)(A1)$ $\int_{-2}^{0} 2dx = [2x]_{-2}^{0} = 4 \quad A1$ $\int_{-2}^{0} (f(x) + 2) dx = 2 \quad A1$ [4 marks]

8b. $\int_{-2}^{0} f(x+2) \, \mathrm{d}x.$

Markscheme

 $\int_{-2}^{0} f(x+2) dx = \int_{0}^{2} f(x) dx$ (M1) = 12 A1 [2 marks]

Let $y = \arccos\left(\frac{x}{2}\right)$

9a. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

[2 marks]

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$y = \arccos\left(rac{x}{2}
ight) \Rightarrow rac{\mathrm{d}y}{\mathrm{d}x} = -rac{1}{2\sqrt{1-\left(rac{x}{2}
ight)^2}} \left(=-rac{1}{\sqrt{4-x^2}}
ight)$$
 M1A1

Note: M1 is for use of the chain rule.

[2 marks]

^{9b.} Find $\int_0^1 \arccos\left(\frac{x}{2}\right) dx$.

[7 marks]

Markscheme attempt at integration by parts M1 $u = \arccos\left(\frac{x}{2}\right) \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{1}{\sqrt{4-x^2}}$ $\frac{\mathrm{d}v}{\mathrm{d}x} = 1 \Rightarrow v = x$ (A1) $\int_0^1 \arccos\left(\frac{x}{2}\right) \mathrm{d}x = \left[x \arccos\left(\frac{x}{2}\right)\right]_0^1 + \int_0^1 \frac{1}{\sqrt{4-x^2}} \mathrm{d}x$ **A1** using integration by substitution or inspection (M1) $\left[x \arccos\left(\frac{x}{2}\right)\right]_{0}^{1} + \left[-\left(4-x^{2}\right)^{\frac{1}{2}}\right]_{0}^{1}$ **A1 Note:** Award **A1** for $-(4-x^2)^{\frac{1}{2}}$ or equivalent. Note: Condone lack of limits to this point. attempt to substitute limits into their integral M1 $=\frac{\pi}{3}-\sqrt{3}+2$ **A1** [7 marks]

Let $f(x) = x^2 - x$, for $x \in \mathbb{R}$. The following diagram shows part of the graph of f. diagram not to scale

The graph of f crosses the x-axis at the origin and at the point P(1,0).

diagram not to scale

The line L intersects the graph of f at another point Q, as shown in the following diagram.

10. Find the area of the region enclosed by the graph of f and the line L. [6 marks]

valid approach **(M1)** eg $\int L - f$, $\int_{-1}^{1} (1 - x^2) dx$, splitting area into triangles and integrals correct integration **(A1)(A1)** eg $\left[x - \frac{x^3}{3}\right]_{-1}^{1}$, $-\frac{x^3}{3} - \frac{x^2}{2} + \frac{x^2}{2} + x$ substituting **their** limits into **their** integrated function and subtracting (in any order) **(M1)** eg $1 - \frac{1}{3} - \left(-1 - \frac{-1}{3}\right)$ Note: Award **M0** for substituting into original or differentiated function. area $= \frac{4}{3}$ **A2 N3**

[6 marks]

11a. Express $x^2 + 3x + 2$ in the form $(x+h)^2 + k$.

Markscheme $x^{2} + 3x + 2 = (x + \frac{3}{2})^{2} - \frac{1}{4}$ A1 [1 mark]

11b. Factorize $x^2 + 3x + 2$.

[1 mark]

Markscheme $x^{2} + 3x + 2 = (x + 2)(x + 1)$ A1 [1 mark] [1 mark]

Consider the function $f(x)=rac{1}{x^2+3x+2}, x\in \mathbb{R}, x
eq -2, x
eq -1.$

11c. Sketch the graph of f(x), indicating on it the equations of the asymptotes, the coordinates of the *y*-intercept and the local maximum.

[5 marks]

^{11d.} Hence find the value of p if $\int_0^1 f(x) dx = \ln(p)$.

[4 marks]

Markscheme $\int_{0}^{1} \frac{1}{x+1} - \frac{1}{x+2} dx$ $= \left[\ln(x+1) - \ln(x+2)\right]_{0}^{1} \quad A\mathbf{1}$ $= \ln 2 - \ln 3 - \ln 1 + \ln 2 \quad M\mathbf{1}$ $= \ln\left(\frac{4}{3}\right) \quad M\mathbf{1}A\mathbf{1}$ $\therefore p = \frac{4}{3}$ [4 marks]

11e. Sketch the graph of y = f(|x|).

11f. Determine the area of the region enclosed between the graph of y = f(|x|), the x-axis and the lines with equations x = -1 and x = 1.

© International Baccalaureate Organization 2023 International Baccalaureate ® - Baccalauréat International ® - Bachillerato Internacional ®

Printed for 2 SPOLECZNE LICEUM