Diff equations [84 marks]

Consider the differential equation $rac{\mathrm{d}y}{\mathrm{d}x}=rac{4x^2+y^2-xy}{x^2}$, with y=2 when x=1.

1a.	Use Euler's method, with step length \boldsymbol{h}	=0.1, to	find an	approximate	[5 marks]
	value of y when $x = 1.4$.				

1b.	Express m^2-2m+4 in the form $\left(m-a ight)^2+b$, where $a,b\in\mathbb{Z}.$	[1 mark]

for	lve the differential equation, for $x>0$, giving your answer in the \qquad [10 mar $y=f\left(x ight) .$

1d. Sketch the graph of $y=f\left(x ight)$ for $1\leqslant x\leqslant 1.4$.	[1 mark]

Consider the differential	equation	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	$1+\frac{y}{x}$,	where a	$x \neq$	0
---------------------------	----------	-------------------------------------	-------------------	---------	----------	---

 ,
 ı
 ,
 ,
 ,

olve the equation $rac{\mathrm{d}y}{\mathrm{d}x}=1+rac{y}{x}$ for $y\left(1 ight)=1$.	[6 marks

Consider the differential equation	$\frac{\mathrm{d}y}{\mathrm{d}x}$ +	$rac{x}{x^2+1}y=x$ where $y=1$ when $x=0$.
------------------------------------	-------------------------------------	--

3a.	Show	that $_{f \lambda}$	$\sqrt{x^2 + 1}$	is an	integrating	factor	for this	differential	equation.	[4 marks]
-----	------	---------------------	------------------	-------	-------------	--------	----------	--------------	-----------	-----------

4a.	Consider	the	differential	equation

[3 marks]

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f\left(\frac{y}{x}\right), \ x > 0.$$

Use the substitution y=vx to show that the general solution of this differential equation is

$$\int \frac{\mathrm{d}v}{f(v)-v} = \ln x + \text{Constant.}$$

4b.	Hence,	or	otherwise,	solve	the	differential	equation

[10 marks]

$$rac{\mathrm{d}y}{\mathrm{d}x}=rac{x^2+3xy+y^2}{x^2}, x>0,$$

given that y=1 when x=1. Give your answer in the form y=g(x).

	Consider the differential equation $rac{\mathrm{d}y}{\mathrm{d}x}+\left(rac{2x}{1+x^2} ight)y=x^2$, given that $y=2$ when $x=0$.
5a.	Show that $1+x^2$ is an integrating factor for this differential equation. $\cite{1.5mm}$ [5 marks]
5b.	Hence solve this differential equation. Give the answer in the form $y=f(x)$.

[6 mar

The function	f is defined	by $f(x) = a$	$\arcsin(2x)$,	where $-\frac{1}{2}\leqslant x \leqslant$	$\leq \frac{1}{2}$
--------------	--------------	---------------	-----------------	---	--------------------

7a. By finding a suitable number of derivatives of f, find the first two nonzero terms in the Maclaurin series for f.

7b. Hei	Hence or otherwise, find $\displaystyle rac{\lim_{x o 0} rac{rcsin(2x) - 2x}{{(2x)}^3}}.$				

© International Baccalaureate Organization 2023 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM