Mock exam review - statistics

[72 marks]

At the end of a school day, the Headmaster conducted a survey asking students in how many classes they had used the internet.

The data is shown in the following table.

Number of classes in which the students used the internet	0	1	2	3	4	5	6
Number of students	20	24	30	\boldsymbol{k}	10	3	1

1a. State whether the data is discrete or continuous.

[1 mark]

The mean number of classes in which a student used the internet is 2.

1b. Find the value of k.

[4 marks]

1c. It was not possible to ask every person in the school, so the Headmaster *[1 mark]* arranged the student names in alphabetical order and then asked every 10th person on the list.

Identify the sampling technique used in the survey.

As part of a study into healthy lifestyles, Jing visited Surrey Hills University. Jing recorded a person's position in the university and how frequently they ate a salad. Results are shown in the table.

	Salad meals per week								
	0 1-2 3-4 >4								
Students	45	26	18	6					
Professors	15	8	5	12					
Staff and Administration	16 13 10 6								

Jing conducted a χ^2 test for independence at a 5 % level of significance.

2a. State the null hypothesis.

[1 mark]

2c. State, giving a reason, whether the null hypothesis should be accepted. [2 marks]

Ms Calhoun measures the heights of students in her mathematics class. She is interested to see if the mean height of male students, μ_1 , is the same as the mean height of female students, μ_2 . The information is recorded in the table.

Male height (cm)	150	148	143	152	151	149	147	
Female height (cm)	148	152	154	147	146	153	152	150

At the 10 % level of significance, a t-test was used to compare the means of the two groups. The data is assumed to be normally distributed and the standard deviations are equal between the two groups.

За.	State	the	null	hypothesis.	
-----	-------	-----	------	-------------	--

[1 mark]

3b. State the alternative hypothesis.

[1 mark]

3c. Calculate the p-value for this test.

[2 marks]

3d. State, giving a reason, whether Ms Calhoun should accept the null hypothesis.

[2 marks]

The weights of apples on a tree can be modelled by a normal distribution with a mean of $85~{\rm grams}$ and a standard deviation of $7.5~{\rm grams}$.

4a. Find the probability that an apple from the tree has a weight greater than $90\ \mathrm{grams}$.

[2 marks]

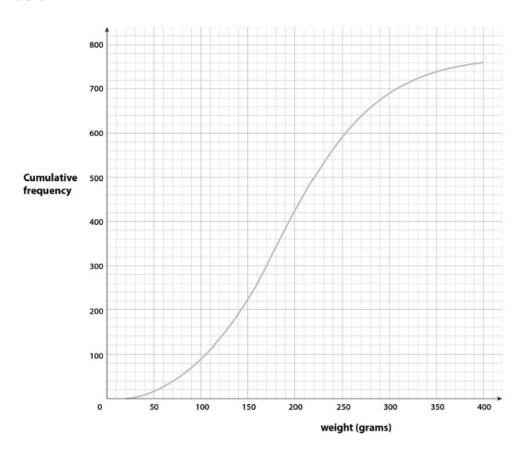
A sample of apples are taken from 2 trees, A and B, in different parts of the orchard.

The data is shown in the table below.

Weight of apples from	90	85	84	79	87	88	91	88
tree A (g)		0.4	0.0			0.4	0.5	
Weight of apples from	77	84	86	83	80	81	85	
tree B (g)								

The owner of the orchard wants to know whether the mean weight of the apples from tree $A(\mu_A)$ is greater than the mean weight of the apples from tree $B(\mu_B)$ so sets up the following test:

$$\mathrm{H}_0:\mu_A=\mu_B$$
 and $\mathrm{H}_1:\mu_A>\mu_B$


4b. Find the p-value for the owner's test.

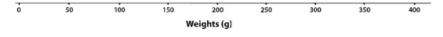
[2 marks]

4c. The test is performed at the 5% significance level. State the conclusion of the test, giving a reason for your answer.

[2 marks]

A food scientist measures the weights of 760 potatoes taken from a single field and the distribution of the weights is shown by the cumulative frequency curve below.

5a. Find the number of potatoes in the sample with a weight of more than $\ \ [2\ marks]$ $200\ grams.$


5b. Find the median weight. [1 mark]

5c. Find the lower quartile. [1 mark]

5d. Find the upper quartile. [1 mark]

5e. The weight of the smallest potato in the sample is 20 grams and the weight of the largest is 400 grams.

Use the scale shown below to draw a box and whisker diagram showing the distribution of the weights of the potatoes. You may assume there are no outliers.

A dice manufacturer claims that for a novelty die he produces the probability of scoring the numbers 1 to 5 are all equal, and the probability of a 6 is two times the probability of scoring any of the other numbers.

6a. Find the probability of scoring a six when rolling the novelty die.

[3 marks]

6b. Find the probability of scoring more than 2 sixes when this die is rolled 5 [4 marks] times.

To test the manufacture's claim one of the novelty dice is rolled 350 times and the numbers scored on the die are shown in the table below.

Number scored	Frequency
1	32
2	57
3	47
4	58
5	54
6	102

6c. Find the expected frequency for each of the numbers if the manufacturer's claim is true.

[2 marks]

A χ^2 goodness of fit test is to be used with a 5% significance level.

6d. Write down the null and alternative hypotheses.

[2 marks]

6e. State the degrees of freedom for the test.

[1 mark]

6f. Determine the conclusion of the test, clearly justifying your answer.

[4 marks]

A calculator generates a random sequence of digits. A sample of 200 digits is randomly selected from the first 100 000 digits of the sequence. The following table gives the number of times each digit occurs in this sample.

digit	0	1	2	3	4	5	6	7	8	9
frequency	17	21	15	19	25	27	19	23	18	16

It is claimed that all digits have the same probability of appearing in the sequence.

7a. Test this claim at the 5% level of significance.

[7 marks]

Sergio is interested in whether an adult's favourite breakfast berry depends on their income level. He obtains the following data for 341 adults and decides to carry out a χ^2 test for independence, at the 10% significance level.

		Income level			
		Low	Medium	High	
Favourite berry	Strawberry	21	39	30	
	Blueberry	39	67	42	
	Other berry	32	45	26	

8a. Write down the null hypothesis.

[1 mark]

8b. Find the value of the χ^2 statistic.

[2 marks]

The critical value of this χ^2 test is 7.78.

8c. Write down Sergio's conclusion to the test in context. Justify your answer.

[2 marks]

Manny and Annabelle, mathematics teachers at Burnham High School, give their students the same examination. A random sample of the examination scores were collected from each of their classes.

Examination scores from Manny's class	76	77	82	84	88	90	91	98
Examination scores from Annabelle's class	68	79	81	89	91	92	92	95

Annabelle uses these scores to conduct a two-tailed t-test to compare the means of the two classes, at the 5% level of significance. It is assumed the examination scores for both classes have the same variance and are normally distributed.

The null hypothesis is $\mu_1 = \mu_2$, where μ_1 is the mean examination score from Manny's class and μ_2 is the mean examination score from Annabelle's class.

9a. Write down the alternative hypothesis.

[1 mark]

9b. Find the p-value for this test. Give your answer correct to five decimal [2 marks] places.

Annabelle concludes there is insufficient evidence to reject the null hypothesis.

9c. State whether Annabelle's conclusion is correct. Give a reason for your [2 marks] answer.

Leo is investigating whether a six-sided die is fair. He rolls the die $60\,$ times and records the observed frequencies in the following table:

Number on die	1	2	3	4	5	6
Observed frequency	8	7	6	15	12	12

Leo carries out a χ^2 goodness of fit test at a 5% significance level.

10a. Write down the null and alternative hypotheses.	[1 mark]
10b. Write down the degrees of freedom.	[1 mark]
10c. Write down the expected frequency of rolling a 1 .	[1 mark]
10d. Find the p -value for the test.	[2 marks]
10e. State the conclusion of the test. Give a reason for your answer.	[2 marks]

© International Baccalaureate Organization 2023
International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM