Volumes 1 [43 marks]

Consider the function $f(x) = \sqrt{x^2 - 1}$, where $1 \leq x \leq 2$.

1a. Sketch the curve y = f(x), clearly indicating the coordinates of the [2 marks] endpoints.

1b. Show that the inverse function of f is given by $f^{-1}(x) = \sqrt{x^2 + 1}$. [3 marks]

1c. State the domain and range of f^{-1} .

[2 marks]

The curve y = f(x) is rotated 2π about the *y*-axis to form a solid of revolution that is used to model a water container.

1d. Show that the volume, $V \text{ m}^3$, of water in the container when it is filled to [3 marks] a height of h metres is given by $V = \pi (\frac{1}{3}h^3 + h)$.

1e. Hence, determine the maximum volume of the container.

[2 marks]

At t=0, the container is empty. Water is then added to the container at a constant rate of $0.4~{
m m^3~s^{-1}}$.

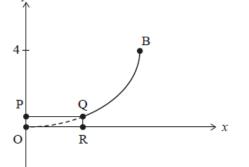
1f. Find the time it takes to fill the container to its maximum volume. *[2 marks]*

1g. Find the rate of change of the height of the water when the container is [6 marks] filled to half its maximum volume.

.

2. The following diagram shows the curve $\frac{x^2}{36} + \frac{(y-4)^2}{16} = 1$, where [5 marks] $h \le y \le 4$.

diagram not to scale



The curve from point ${
m Q}$ to point ${
m B}$ is rotated $360\,^\circ$ about the y-axis to form the

interior surface of a bowl. The rectangle $\rm OPQR$, of height $h~{\rm cm}$, is rotated $360\degree$ about the y-axis to form a solid base.

The bowl is assumed to have negligible thickness.

Given that the interior volume of the bowl is to be $285\ {\rm cm}^3$, determine the height of the base.

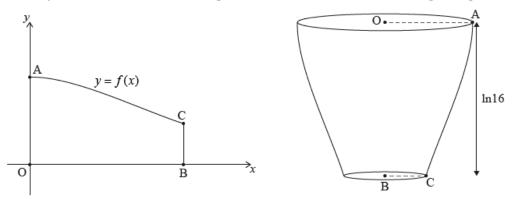
 •

A function f is defined by $f(x) = rac{k\mathrm{e}^{rac{x}{2}}}{1+\mathrm{e}^{x}}$, where $x \in \mathbb{R}, x \geq 0$ and $k \in \mathbb{R}^+$.

The region enclosed by the graph of y = f(x), the x-axis, the y-axis and the line $x = \ln 16$ is rotated 360° about the x-axis to form a solid of revolution.

 	 	 	 	 	••••

Pedro wants to make a small bowl with a volume of 300 cm^3 based on the result from part (a). Pedro's design is shown in the following diagrams.



The vertical height of the bowl, BO, is measured along the x-axis. The radius of the bowl's top is OA and the radius of the bowl's base is BC. All lengths are measured in cm.

3b. Find the value of k that satisfies the requirements of Pedro's design. [2 marks]

 $\label{eq:constraint} \mbox{3c. Find } OA.$

[2 marks]

For design purposes, Pedro investigates how the cross-sectional radius of the bowl changes.

3e. By sketching the graph of a suitable derivative of f, find where the cross-[4 marks] sectional radius of the bowl is decreasing most rapidly.

© International Baccalaureate Organization 2023 International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for 2 SPOLECZNE LICEUM

[2 marks]