

| Mathematics: analysis and approaches                  |           |
|-------------------------------------------------------|-----------|
| Practice paper 1 HL markscheme                        | Total 110 |
|                                                       |           |
| Section A [54 marks]                                  |           |
| 1.                                                    |           |
| METHOD 1                                              |           |
| $2\ln x - \ln 9 = 4$                                  |           |
| uses $m \ln x = \ln x^m$                              | (M1)      |
| $\ln x^2 - \ln 9 = 4$                                 |           |
| uses $\ln a - \ln b = \ln \frac{a}{b}$                | (M1)      |
| $\ln\frac{x^2}{9} = 4$                                |           |
| $\frac{x^2}{9} = e^4$                                 | A1        |
| $x^2 = 9e^4 \Longrightarrow x = \sqrt{9e^4}  (x > 0)$ | A1        |
| $x = 3e^2 (p = 3, q = 2)$                             | A1        |
| METHOD 2                                              |           |
| expresses 4 as 4lne and uses $\ln x^m = m \ln x$      | (M1)      |
| $2\ln x = 2\ln 3 + 4\ln e (\ln x = \ln 3 + 2\ln e)$   | A1        |
| uses $2 \ln e = \ln e^2$ and $\ln a + \ln b = \ln ab$ | (M1)      |
| $\ln x = \ln \left( 3e^2 \right)$                     | A1        |
| $x = 3e^2 (p = 3, q = 2)$                             | A1        |
| METHOD 3                                              |           |

| expresses 4 as 4 lne and uses $m \ln x = \ln x^m$ | (M1) |
|---------------------------------------------------|------|
| $\ln x^2 = \ln 3^2 + \ln e^4$                     | A1   |



# uses $\ln a + \ln b = \ln ab$ (M1) $\ln x^2 = \ln (3^2 e^4)$ $x^2 = 3^2 e^4 \Rightarrow x = \sqrt{3^2 e^4} (x > 0)$ A1 so $x = 3e^2 (x > 0) (p = 3, q = 2)$ A1

Total [5 marks]

#### 2.

uses 
$$\sum P(X = x)(=1)$$
 (M1)  
 $k^{2} + (7k + 2) + (-2k) + (3k^{2})(=1)$ 

$$4k^2 + 5k + 1(=0)$$

#### EITHER

attempts to factorize their quadratic M1

$$(k+1)(4k+1) = 0$$

#### OR

attempts use of the quadratic formula on their equation M1

$$k = \frac{-5 \pm \sqrt{5^2 - 4(4)(1)}}{8} \left( = \frac{-5 \pm 3}{8} \right)$$

#### THEN

$$k = -1, -\frac{1}{4}$$

rejects k = -1 as this value leads to invalid probabilities, for example, P(X=2) = -5 < 0 R1

so 
$$k = -\frac{1}{4}$$
 **A1**

**Note:** Award **ROA1** if  $k = -\frac{1}{4}$  is stated without a valid reason given for rejecting k = -1.

Total [6 marks]



#### 3.

### (a) **EITHER**

uses 
$$u_2 - u_1 = u_3 - u_2$$
 (M1)

#### OR

| (M1) |
|------|
|      |

$$5u_1 - 8 = \frac{u_1 + (3u_1 + 8)}{2}$$

$$3u_1 = 12$$
A1

#### THEN

so 
$$u_1 = 4$$
 AG

[2 marks]

(b) 
$$d=8$$
 (A1)

uses 
$$S_n = \frac{n}{2} (2u_1 + (n-1)d)$$
 M1

$$S_n = \frac{n}{2} (8 + 8(n-1))$$
 A1

$$=4n^{2}$$

$$= (2n)^2$$

# **Note:** The final **A1** can be awarded for clearly explaining that $4n^2$ is a square number.

so sum of the first n terms is a square number

AG

[4 marks]

Total [6 marks]



$$(f \circ g)(x) = ax + b - 2 \tag{M1}$$

$$(f \circ g)(2) = -3 \Longrightarrow 2a + b - 2 = -3 (2a + b = -1)$$
 A1

$$(g \circ f)(x) = a(x-2) + b$$
 (M1)

$$(g \circ f)(1) = 5 \Longrightarrow -a + b = 5$$
 A1

a valid attempt to solve their two linear equations for 
$$a$$
 and  $b$  M1

so 
$$a = -2$$
 and  $b = 3$ 

Total [6 marks]

### 5.

attempts either product rule or quotient rule differentiation M1

#### EITHER

$$\frac{dy}{dx} = -\frac{3x^2 + bx}{(x+2)^2} + \frac{6x + b}{x+2}$$
 A1

#### OR

$$\frac{dy}{dx} = \frac{(x+2)(6x+b) - (3x^2 + bx)}{(x+2)^2}$$
 A1

Note: Award A0 if the denominator is incorrect. Subsequent marks can be awarded.

#### THEN

sets their 
$$\frac{dy}{dx} = 0$$
 M1

$$(x+2)(6x+b)-(3x^2+bx)=0$$

$$3x^2 + 12x + 2b = 0$$
 A1

(exactly two points of zero gradient requires)  $12^2 - (4)(3)(2b) > 0$  M1

*b*<6 A1

Total [6 marks]



6.

attempts to apply l'Hôpital's rule on 
$$\lim_{x\to 0} \left( \frac{2x\cos(x^2)}{5\tan x} \right)$$
 M1

$$= \lim_{x \to 0} \left( \frac{2\cos(x^{2}) - 4x^{2}\sin(x^{2})}{5\sec^{2}x} \right)$$
 M1A1A1

**Note:** Award **M1** for attempting to use product and chain rule differentiation on the numerator, **A1** for a correct numerator and **A1** for a correct denominator. The awarding of **A1** for the denominator is independent of the **M1**.

$$=\frac{2}{5}$$
 A1

Total [5 marks]

M1

M1

# 7.

# METHOD 1

| from vertex $P$ , draws a line parallel to $\left[ QR \right]$ that meets $\left[ SR \right]$ at a point $x$ (M1) |
|-------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------|

uses the sine rule in  $\Delta\!PSX$ 

$$\frac{PS}{\sin\beta} = \frac{y - x}{\sin(180^\circ - \alpha - \beta)}$$
A1

$$\sin(180^\circ - \alpha - \beta) = \sin(\alpha + \beta) \tag{A1}$$

$$PS = \frac{(y-x)\sin\beta}{\sin(\alpha+\beta)}$$
 A1

#### METHOD 2

let the height of quadrilateral PQRS be h

$$h = PS \sin \alpha$$
 A1

attempts to find a second expression for h

$$h = (y - x - PS \cos \alpha) \tan \beta$$

 $PS\sin\alpha = (y - x - PS\cos\alpha)\tan\beta$ 



writes 
$$\tan \beta$$
 as  $\frac{\sin \beta}{\cos \beta}$ , multiplies through by  $\cos \beta$  and expands the RHS M1

 $PS\sin\alpha\cos\beta = (y-x)\sin\beta - PS\cos\alpha\sin\beta$ 

$$PS = \frac{(y-x)\sin\beta}{\sin\alpha\cos\beta + \cos\alpha\sin\beta}$$
 A1

$$PS = \frac{(y-x)\sin\beta}{\sin(\alpha+\beta)}$$

Total [5 marks]

8.

(a) attempts to calculate 
$$\begin{pmatrix} 2 \\ 1 \\ m \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -5 \\ -m \end{pmatrix}$$
 (M1)

$$= -1 - m^2$$
 A1

since 
$$m^2 \ge 0$$
,  $-1 - m^2 < 0$  for  $m \in \mathbb{R}$  **R1**

so 
$$l_1$$
 and  $l_2$  are never perpendicular to each other AG

[3 marks]

(b) (i) (since  $l_1$  is parallel to  $\Pi$ ,  $l_1$  is perpendicular to the normal of  $\Pi$  and so)

$$\begin{pmatrix} 2\\1\\m \end{pmatrix} \cdot \begin{pmatrix} 1\\4\\-1 \end{pmatrix} = 0$$

$$2+4-m=0$$

$$m=6$$
A1



(ii) since there are no points in common, (3, -2, 0) does not lie in  $\Pi$ 

#### EITHER

substitutes 
$$(3,-2,0)$$
 into  $x+4y-z \neq p$  (M1)

# OR

$$\begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} (\neq p)$$
 (M1)

THEN

р

[4 marks]

R1

Total [7 marks]

9.

let P(n) be the proposition that 
$$\sum_{r=1}^{n} \cos(2r-1)\theta = \frac{\sin 2n\theta}{2\sin\theta}$$
 for  $n \in \mathbb{Z}^{+1}$ 

considering P(1):

LHS = 
$$\cos(1)\theta = \cos\theta$$
 and RHS =  $\frac{\sin 2\theta}{2\sin\theta} = \frac{2\sin\theta\cos\theta}{2\sin\theta} = \cos\theta = LHS$ 

so P(1) is true

assume P(k) is true, i.e. 
$$\sum_{r=1}^{k} \cos(2r-1)\theta = \frac{\sin 2k\theta}{2\sin \theta} (k \in \mathbb{Z}^{+})$$
 M1

**Note:** Award **M0** for statements such as "let n = k".

Note: Subsequent marks after this M1 are independent of this mark and can be awarded.



considering P(k+1):

$$\sum_{r=1}^{k+1} \cos(2r-1)\theta = \sum_{r=1}^{k} \cos(2r-1)\theta + \cos(2(k+1)-1)\theta$$
M1

$$=\frac{\sin 2k\theta}{2\sin \theta} + \cos(2(k+1)-1)\theta$$
 A1

$$=\frac{\sin 2k\theta + 2\cos((2k+1)\theta)\sin\theta}{2\sin\theta}$$
$$=\frac{\sin 2k\theta + \sin((2k+1)\theta + \theta) - \sin((2k+1)\theta - \theta)}{2\sin\theta}$$
M1

Note: Award M1 for use of  $2\cos A \sin B = \sin(A+B) - \sin(A-B)$  with  $A = (2k+1)\theta$  and  $B = \theta$ .

$$=\frac{\sin 2k\theta + \sin (2k+2)\theta - \sin 2k\theta}{2\sin \theta}$$
 A1

$$=\frac{\sin 2(k+1)\theta}{2\sin\theta}$$
A1

P(k+1) is true whenever P(k) is true, P(1) is true, so P(n) is true for  $n \in \mathbb{Z}^+$  **R1** 

**Note:** Award the final **R1** mark provided at least five of the previous marks have been awarded.

Total [8 marks]

# Section B [56 marks]

10.

| (a) | attempts to find $h(0)$ | (M1) |
|-----|-------------------------|------|
|     |                         |      |

 $h(0) = 0.4\cos(0) + 1.8(=2.2)$ 

2.2 (m) (above the ground) A1

[2 marks]



#### (b) EITHER

uses the minimum value of 
$$\cos(\pi t)$$
 which is  $-1$  M1

$$0.4(-1)+1.8$$
 (m)

### OR

the amplitude of motion is 0.4 (m) and the mean position is 1.8 (m) M1

#### OR

finds  $h'(t) = -0.4\pi \sin(\pi t)$ , attempts to solve h'(t) = 0 for t and determines that the minimum height above the ground occurs at t = 1, 3, ... M1

$$0.4(-1)+1.8$$
 (m)

#### THEN

| A1 |
|----|
|    |

[2 marks]

#### (c) **EITHER**

| the ball is released from its maximum height and returns there a period later | r <b>R1</b> |
|-------------------------------------------------------------------------------|-------------|
| $\mathcal{I}_{\pi}$                                                           |             |

the period is 
$$\frac{2\pi}{\pi}(=2)$$
 (s) A1

#### OR

attempts to solve h(t) = 2.2 for t M1

 $\cos(\pi t) = 1$ 

$$t = 0, 2, ...$$
 A1

#### THEN

so it takes 2 seconds for the ball to return to its initial position for the first time AG

[2 marks]



(M1)

(d)  $0.4\cos(\pi t) + 1.8 = 1.8 + 0.2\sqrt{2}$ 

$$0.4\cos\left(\pi t\right) = 0.2\sqrt{2}$$

$$\cos\left(\pi t\right) = \frac{\sqrt{2}}{2}$$

$$\pi t = \frac{\pi}{4}, \frac{7\pi}{4} \tag{A1}$$

**Note:** Accept extra correct positive solutions for  $\pi t$ .

$$t = \frac{1}{4}, \frac{7}{4} \quad (0 \le t \le 2)$$

**Note:** Do not award **A1** if solutions outside  $0 \le t \le 2$  are also stated.

the ball is less than  $1.8 + 0.2\sqrt{2}$  metres above the ground for  $\frac{7}{4} - \frac{1}{4}(s)$ 

(e) **EITHER** 

attempts to find h'(t) (M1)

#### OR

recognizes that h'(t) is required (M1)



#### THEN

$$h'(t) = -0.4\pi \sin\left(\pi t\right)$$

attempts to evaluate their 
$$h'\left(\frac{1}{3}\right)$$
 (M1)

$$h'\left(\frac{1}{3}\right) = -0.4\pi \sin\frac{\pi}{3}$$
  
=  $-0.2\pi\sqrt{3} \ (ms^{-1})$  A1

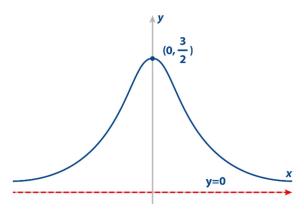
**Note:** Accept equivalent correct answer forms where  $p \in \mathbb{Q}$ . For example,  $-\frac{1}{5}\pi\sqrt{3}$ .

# [4 marks]

# Total [15 marks]

11.

(a)



| a curve symmetrical about the $y_{-}$ axis with correct concavity that has a local |       |
|------------------------------------------------------------------------------------|-------|
| maximum point on the positive $y_{-}$ axis                                         | A1    |
| a curve clearly showing that $y \rightarrow 0$ as $x \rightarrow \pm \infty$       | A1    |
| $\left(0,\frac{3}{2}\right)$                                                       | A1    |
| horizontal asymptote $y = 0$ (x-axis)                                              | A1    |
| [4 m                                                                               | arks] |

1



(b) attempts to find 
$$\int \frac{3}{x^2 + 2} dx$$
 (M1)

$$= \left[\frac{3}{\sqrt{2}}\arctan\frac{x}{\sqrt{2}}\right]$$
 A1

**Note:** Award **M1A0** for obtaining  $\left[k \arctan \frac{x}{\sqrt{2}}\right]$  where  $k \neq \frac{3}{\sqrt{2}}$ .

Note: Condone the absence of or use of incorrect limits to this stage.

$$=\frac{3}{\sqrt{2}}\left(\arctan\sqrt{3}-\arctan 0\right) \tag{M1}$$

$$=\frac{3}{\sqrt{2}}\times\frac{\pi}{3}\left(=\frac{\pi}{\sqrt{2}}\right)$$
A1

$$A = \frac{\sqrt{2}\pi}{2}$$
 AG

(c) METHOD 1

EITHER

$$\int_{0}^{k} \frac{3}{x^{2} + 2} dx = \frac{\sqrt{2}\pi}{4}$$

$$\frac{3}{\sqrt{2}} \arctan \frac{k}{\sqrt{2}} = \frac{\sqrt{2}\pi}{4}$$
(M1)

#### OR

$$\int_{k}^{\sqrt{6}} \frac{3}{x^{2}+2} dx = \frac{\sqrt{2}\pi}{4}$$

$$\frac{3}{\sqrt{2}} \left( \arctan\sqrt{3} - \arctan\frac{k}{\sqrt{2}} \right) = \frac{\sqrt{2}\pi}{4}$$
(M1)
$$\arctan\sqrt{3} - \arctan\frac{k}{\sqrt{2}} = \frac{\pi}{6}$$



#### THEN

$$\arctan\frac{k}{\sqrt{2}} = \frac{\pi}{6}$$

$$\frac{k}{\sqrt{2}} = \tan\frac{\pi}{6} \left( = \frac{1}{\sqrt{3}} \right)$$
 A1

$$k = \frac{\sqrt{6}}{3} \left( = \sqrt{\frac{2}{3}} \right)$$
 A1

#### METHOD 2

$$\int_{0}^{k} \frac{3}{x^{2}+2} dx = \int_{k}^{\sqrt{6}} \frac{3}{x^{2}+2} dx$$

$$\frac{3}{\sqrt{2}} \arctan \frac{k}{\sqrt{2}} = \frac{3}{\sqrt{2}} \left( \arctan \sqrt{3} - \arctan \frac{k}{\sqrt{2}} \right)$$
(M1)

$$\arctan\frac{k}{\sqrt{2}} = \frac{\pi}{6}$$
 A1

$$\frac{k}{\sqrt{2}} = \tan\frac{\pi}{6} \left( = \frac{1}{\sqrt{3}} \right)$$
 A1

$$k = \frac{\sqrt{6}}{3} \left( = \sqrt{\frac{2}{3}} \right)$$
 A1

[4 marks]

(d) attempts to find  $\frac{d}{dx}\left(\frac{3}{x^2+2}\right)$  (M1)

$$= (3)(-1)(2x)(x^{2}+2)^{-2}$$
 A1

so 
$$m = -\frac{6x}{\left(x^2 + 2\right)^2}$$
 AG

[2 marks]



M1

#### (e) attempts product rule or quotient rule differentiation

EITHER

$$\frac{\mathrm{d}m}{\mathrm{d}x} = (-6x)(-2)(2x)(x^2+2)^{-3} + (x^2+2)^{-2}(-6)$$
A1

OR

$$\frac{\mathrm{d}m}{\mathrm{d}x} = \frac{\left(x^2 + 2\right)^2 \left(-6\right) - \left(-6x\right)(2)(2x)\left(x^2 + 2\right)}{\left(x^2 + 2\right)^4}$$
A1

Note: Award A0 if the denominator is incorrect. Subsequent marks can be awarded.

#### THEN

attempts to express their  $\frac{dm}{dx}$  as a rational fraction with a factorized numerator **M1** 

$$\frac{\mathrm{d}m}{\mathrm{d}x} = \frac{6(x^2+2)(3x^2-2)}{(x^2+2)^4} \left( = \frac{6(3x^2-2)}{(x^2+2)^3} \right)$$

attempts to solve their  $\frac{\mathrm{d}m}{\mathrm{d}x} = 0$  for x M1

$$x = \pm \sqrt{\frac{2}{3}}$$

from the curve, the maximum value of *m* occurs at  $x = -\sqrt{\frac{2}{3}}$  **R1** 

(the minimum value of *m* occurs at  $x = \sqrt{\frac{2}{3}}$ )

Note: Award R1 for any equivalent valid reasoning.

maximum value of *m* is 
$$-\frac{6\left(-\sqrt{\frac{2}{3}}\right)}{\left(\left(-\sqrt{\frac{2}{3}}\right)^2+2\right)^2}$$
 A1

leading to a maximum value of 
$$\frac{27}{32}\sqrt{\frac{2}{3}}$$
 AG

[7 marks]

Total [21 marks]



(a) uses the binomial theorem on 
$$(\cos \theta + i \sin \theta)^4$$
 M1  
=  ${}^4C_0 \cos^4 \theta + {}^4C_1 \cos^3 \theta (i \sin \theta) + {}^4C_2 \cos^2 \theta (i^2 \sin^2 \theta)$ 

$$+{}^{4}C_{3}\cos\theta(\mathrm{i}^{3}\sin^{3}\theta) + {}^{4}C_{4}(\mathrm{i}^{4}\sin^{4}\theta)$$

$$= \left(\cos^4\theta - 6\cos^2\theta\sin^2\theta + \sin^4\theta\right) + i\left(4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta\right)$$
 A1

# [3 marks]

(b) (using de Moivre's theorem with 
$$n=4$$
 gives)  $\cos 4\theta + i \sin 4\theta$  (A1)

equates both the real and imaginary parts of  $\cos 4 heta + i \sin 4 heta$  and

$$\left(\cos^4\theta - 6\cos^2\theta\sin^2\theta + \sin^4\theta\right) + i\left(4\cos^3\theta\sin\theta - 4\cos\theta\sin^3\theta\right)$$
 **M1**

 $\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$  and  $\sin 4\theta = 4\cos^3 \theta \sin \theta - 4\cos \theta \sin^3 \theta$ 

recognizes that 
$$\cot 4\theta = \frac{\cos 4\theta}{\sin 4\theta}$$
 (A1)

substitutes for 
$$\sin 4\theta$$
 and  $\cos 4\theta$  into  $\frac{\cos 4\theta}{\sin 4\theta}$  M1

$$\cot 4\theta = \frac{\cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta}{4\cos^3 \theta \sin \theta - 4\cos \theta \sin^3 \theta}$$

divides the numerator and denominator by  $\sin^4 heta$  to obtain

$$\cot 4\theta = \frac{\frac{\cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta}{\frac{\sin^4 \theta}{4\cos^3 \theta \sin \theta - 4\cos \theta \sin^3 \theta}}}{\frac{\sin^4 \theta}{\sin^4 \theta}}$$
A1

$$\cot 4\theta = \frac{\cot^4 \theta - 6\cot^2 \theta + 1}{4\cot^3 \theta - 4\cot \theta}$$

[5 marks]



International Baccalaureat Baccalauréat International Bachillerato Internacional

M1

setting  $\cot 4\theta = 0$  and putting  $x = \cot^2 \theta$  in the numerator of (c)

$$\cot 4\theta = \frac{\cot^4 \theta - 6\cot^2 \theta + 1}{4\cot^3 \theta - 4\cot \theta} \text{ gives } x^2 - 6x + 1 = 0$$
 M1

attempts to solve  $\cot 4\theta = 0$  for  $\theta$ 

$$4\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \dots \left(4\theta = \frac{1}{2}(2n+1)\pi, n = 0, 1, \dots\right)$$
(A1)

$$\theta = \frac{\pi}{8}, \frac{3\pi}{8}$$

**Note:** Do not award the final **A1** if solutions other than  $\theta = \frac{\pi}{8}, \frac{3\pi}{8}$  are listed.

finding the roots of 
$$\cot 4\theta = 0$$
  $\left(\theta = \frac{\pi}{8}, \frac{3\pi}{8}\right)$  corresponds to finding the roots of  $x^2 - 6x + 1 = 0$  where  $x = \cot^2 \theta$  R1

so the equation 
$$x^2 - 6x + 1 = 0$$
 has roots  $\cot^2 \frac{\pi}{8}$  and  $\cot^2 \frac{3\pi}{8}$  AG

[5 marks]

attempts to solve  $x^2 - 6x + 1 = 0$  for x (d) M1

$$x = 3 \pm 2\sqrt{2}$$

since 
$$\cot^2 \frac{\pi}{8} > \cot^2 \frac{3\pi}{8}$$
,  $\cot^2 \frac{3\pi}{8}$  has the smaller value of the two roots **R1**

Note: Award R1 for an alternative convincing valid reason.

so 
$$\cot^2 \frac{3\pi}{8} = 3 - 2\sqrt{2}$$
 A1

let  $y = \csc^2 \theta$ (e)

> uses  $\cot^2 \theta = \csc^2 \theta - 1$  where  $x = \cot^2 \theta$ (M1)

$$x^{2} - 6x + 1 = 0 \Rightarrow (y - 1)^{2} - 6(y - 1) + 1 = 0$$
 M1

$$y^2 - 8y + 8 = 0$$
 A1

[3 marks]

Total [20 marks]