

Total 110

Mathematics: analysis and approaches

Practice paper 1 HL

Section A [54 marks]

1.

Solve the equation $2\ln x = \ln 9 + 4$. Give your answer in the form $x = pe^{q}$ where $p, q \in \mathbb{Z}^{+}$.

2.

[Maximum mark: 6]

[Maximum mark: 5]

The following table shows the probability distribution of a discrete random variable X where x = 1, 2, 3, 4.

x	1	2	3	4
$\mathbf{P}(X=x)$	k^2	7 <i>k</i> +2	-2k	$3k^2$

Find the value of k, justifying your answer.

3.

[Maximum mark: 6]

[2]

The first three terms of an arithmetic sequence are $u_1, 5u_1 - 8$ and $3u_1 + 8$.

(a) Show that $u_1 = 4$.	
---------------------------	--

(b) Prove that the sum of the first *n* terms of this arithmetic sequence is a square number. [4]

[Maximum mark: 6]

The functions f and g are defined for $x \in \mathbb{R}$ by f(x) = x - 2 and g(x) = ax + b, where $a, b \in \mathbb{R}$.

Given that $(f \circ g)(2) = -3$ and $(g \circ f)(1) = 5$, find the value of a and the value of b.

[Maximum mark: 6]

Consider the function $f(x) = \frac{3x^2 + bx}{x+2}$ where $x \neq -2$ and $b \in \mathbb{R}$.

Find the set of values for b such that the graph of f has exactly two points of zero gradient.

[Maximum mark: 5]

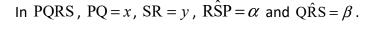
[Maximum mark: 5]

Use l'Hôpital's rule to determine the value of $\lim_{x\to 0} \left(\frac{2x\cos(x^2)}{5\tan x} \right)$.

7.

6.

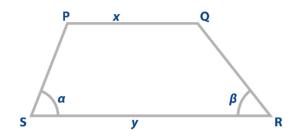
Consider quadrilateral PQRS where [PQ] is parallel to [SR].



Find an expression for PS in terms of $x, y, \sin \beta$ and $\sin(\alpha + \beta)$.

4.

5.



[Maximum mark: 7]

The lines l_1 and l_2 have the following vector equations where $\lambda, \mu \in \mathbb{R}$ and $m \in \mathbb{R}$.

$$l_{1}: \mathbf{r}_{1} = \begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ m \end{pmatrix} l_{2}: \mathbf{r}_{2} = \begin{pmatrix} -1 \\ -4 \\ -2m \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -5 \\ -m \end{pmatrix}$$

(a) Show that l_1 and l_2 are never perpendicular to each other.

The plane Π has Cartesian equation x + 4y - z = p where $p \in \mathbb{R}$.

(b) Given that l_1 and Π have no points in common, find

- (i) the value of *m*
- (ii) and the condition on the value of p. [4]

9.

[Maximum mark: 8]

It is given that $2\cos A\sin B \equiv \sin(A+B) - \sin(A-B)$. (Do **not** prove this identity.)

Using mathematical induction and the above identity, prove that $\sum_{r=1}^{n} \cos(2r-1)\theta = \frac{\sin 2n\theta}{2\sin \theta}$ for $n \in \mathbb{Z}^{+}$.

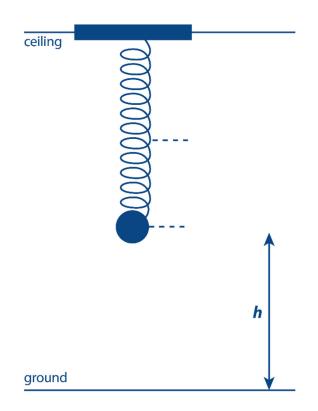
[3]

Section B [56 marks]

10.

[Maximum mark: 15]

The following diagram shows a ball attached to the end of a spring, which is suspended from a ceiling.



The height, h metres, of the ball above the ground at time t seconds after being released can be modelled by the function $h(t) = 0.4\cos(\pi t) + 1.8$ where $t \ge 0$.

(a)	Find the height of the ball above the ground when it is released.	[2]
(b)	Find the minimum height of the ball above the ground.	[2]
(c)	Show that the ball takes 2 seconds to return to its initial height above the groun for the first time.	d [2]
(d)	For the first 2 seconds of its motion, determine the amount of time that the ball	is
	less than $1.8 + 0.2\sqrt{2}$ metres above the ground.	[5]

(e) Find the rate of change of the ball's height above the ground when $t = \frac{1}{3}$. Give your answer in the form $p\pi\sqrt{q}$ ms⁻¹ where $p \in \mathbb{Q}$ and $q \in \mathbb{Z}^+$. [4]

[Maximum mark: 21]

A function f is defined by $f(x) = \frac{3}{x^2 + 2}$, $x \in \mathbb{R}$.

(a) Sketch the curve y = f(x), clearly indicating any asymptotes with their equations and stating the coordinates of any points of intersection with the axes. [4]

The region R is bounded by the curve y = f(x), the x-axis and the lines x=0 and $x = \sqrt{6}$. Let A be the area of R.

(b) Show that
$$A = \frac{\sqrt{2}\pi}{2}$$
. [4]

The line x = k divides R into two regions of equal area.

(c) Find the value of
$$k$$
. [4]

Let *m* be the gradient of a tangent to the curve y = f(x).

(d) Show that
$$m = -\frac{6x}{(x^2 + 2)^2}$$
. [2]

(e) Show that the maximum value of *m* is $\frac{27}{32}\sqrt{\frac{2}{3}}$. [7]

11.

[Maximum mark: 20]

- (a) Use the binomial theorem to expand $(\cos \theta + i \sin \theta)^4$. Give your answer in the form a+bi where a and b are expressed in terms of $\sin \theta$ and $\cos \theta$. [3]
- (b) Use de Moivre's theorem and the result from part (a) to show that $\cot 4\theta = \frac{\cot^4 \theta - 6 \cot^2 \theta + 1}{4 \cot^3 \theta - 4 \cot \theta}.$ [5]
- (c) Use the identity from part (b) to show that the quadratic equation $x^2 6x + 1 = 0$ has roots $\cot^2 \frac{\pi}{8}$ and $\cot^2 \frac{3\pi}{8}$. [5]
- (d) Hence find the exact value of $\cot^2 \frac{3\pi}{8}$. [4]
- (e) Deduce a quadratic equation with integer coefficients, having roots $\csc^2 \frac{\pi}{8}$ and $\csc^2 \frac{3\pi}{8}$. [3]

12.