

International Baccalaureate" Baccalauréat International **Bachillerato Internacional**

(A1)

(M1)

A1

M1

(M1)

A1

(M1)

Mathematics: analysis and approaches Practice paper 1 SL markscheme Total 80 Section A [35 marks] 1. **METHOD 1** $f(x) = \int 3\sqrt{x} \, \mathrm{d}x$ attempts to integrate $f(x) = 2x^{\frac{3}{2}} + C \ \left(= 2x\sqrt{x} + C\right)$ uses f(1) = 3 to obtain $3 = 2(1)^{\frac{3}{2}} + C$ and so C = 1substitutes x = 4 into their expression for f(x)so f(4) = 17

METHOD 2

$$\int_{1}^{4} f'(x) dx = \int_{1}^{4} 3\sqrt{x} dx$$
 (A1)

attempts to integrate both sides

$$\left[f(x)\right]_{1}^{4} = \left[2x^{\frac{3}{2}}\right]_{1}^{4}$$

$$f(4) - f(1) = 16 - 2$$
 M1

uses
$$f(1) = 3$$
 to find their value of $f(4)$ (M1)

$$f(4) - 3 = 16 - 2$$

so
$$f(4) = 17$$

Total [6 marks]

A1

2.

METHOD 1

$2\ln x - \ln 9 = 4$	
uses $m \ln x = \ln x^m$	(M1)
$\ln x^2 - \ln 9 = 4$	

uses
$$\ln a - \ln b = \ln \frac{a}{b}$$
 (M1)

$$\ln \frac{x^2}{9} = 4$$

$$\frac{x^2}{9} = e^4$$
A1

$$x^2 = 9e^4 \Longrightarrow x = \sqrt{9e^4} \quad (x > 0)$$

$$x = 3e^2 (p = 3, q = 2)$$
 A1

METHOD 2

expresses 4 as $4 \ln e$ and uses $\ln x^m = m \ln x$	(M1)
---	------

$$2\ln x = 2\ln 3 + 4\ln e (\ln x = \ln 3 + 2\ln e)$$
 A1

uses
$$2 \ln e = \ln e^2$$
 and $\ln a + \ln b = \ln ab$ (M1)

$$\ln x = \ln \left(3e^2 \right)$$

$$x = 3e^2 (p = 3, q = 2)$$
 A1

METHOD 3

M1)
M1

$$\ln x^2 = \ln 3^2 + \ln e^4$$

uses
$$\ln a + \ln b = \ln ab$$
 (M1)

$$\ln x^2 = \ln \left(3^2 e^4\right)$$

$$x^{2} = 3^{2} e^{4} \Longrightarrow x = \sqrt{3^{2} e^{4}} (x > 0)$$
 A1

so $x = 3e^2$ (x>0) (p = 3,q = 2) A1

Total [5 marks]

M1

3.
uses
$$\sum P(X = x)(=1)$$
 (M1)
 $k^{2} + (7k+2) + (-2k) + (3k^{2})(=1)$
 $4k^{2} + 5k + 1(=0)$ A1

EITHER

attempts to factorize their quadratic

$$(k+1)(4k+1) = 0$$

OR

attempts use of the quadratic formula on their equation M1

$$k = \frac{-5 \pm \sqrt{5^2 - 4(4)(1)}}{8} \left(= \frac{-5 \pm 3}{8} \right)$$

THEN

$$k = -1, -\frac{1}{4}$$

rejects k = -1 as this value leads to invalid probabilities, for example, P(X=2) = -5 < 0 **R1**

so
$$k = -\frac{1}{4}$$

Note: Award **ROA1** if $k = -\frac{1}{4}$ is stated without a valid reason given for rejecting k = -1.

Total [6 marks]

Ъ

4.

(a) **EITHER**

uses
$$u_2 - u_1 = u_3 - u_2$$
 (M1)
 $(5u_1 - 8) - u_1 = (3u_1 + 8) - (5u_1 - 8)$

$$6u_1 = 24$$
 A1

OR

uses
$$u_2 = \frac{u_1 + u_3}{2}$$
 (M1)
 $5u_1 - 8 = \frac{u_1 + (3u_1 + 8)}{2}$
 $3u_1 = 12$ A1

THEN

so $u_1 = 4$ AG

[2 marks]

(b)
$$d = 8$$
 (A1)

uses
$$S_n = \frac{n}{2} (2u_1 + (n-1)d)$$
 M1

$$S_n = \frac{n}{2} (8 + 8(n-1))$$
 A1

$$=4n^2$$

$$=(2n)^2$$

Note: The final **A1** can be awarded for clearly explaining that $4n^2$ is a square number.

so sum of the first n terms is a square number

AG

[4 marks]

Total [6 marks]

$$(f \circ g)(x) = ax + b - 2$$
 (M1)
 $(f \circ g)(2) = -3 \Longrightarrow 2a + b - 2 = -3 (2a + b = -1)$ A1

$$(g \circ f)(x) = a(x-2) + b$$
 (M1)

$$(g \circ f)(1) = 5 \Longrightarrow -a + b = 5$$
 A1

so
$$a = -2$$
 and $b = 3$

Total [6 marks]

M1

6.

attempts either product rule or quotient rule differentiation

EITHER

$$\frac{dy}{dx} = -\frac{3x^2 + bx}{(x+2)^2} + \frac{6x + b}{x+2}$$
 A1

OR

$$\frac{dy}{dx} = \frac{(x+2)(6x+b) - (3x^2 + bx)}{(x+2)^2}$$
 A1

Note: Award A0 if the denominator is incorrect. Subsequent marks can be awarded.

THEN

b < 6

sets their
$$\frac{dy}{dx} = 0$$

 $(x+2)(6x+b)-(3x^2+bx) = 0$

$$3x^2 + 12x + 2b = 0$$
 A1

(exactly two points of zero gradient requires)
$$12^2 - (4)(3)(2b) > 0$$
 M1

A1

Total [6 marks]

[2 marks]

(M1)

Section B [45 marks]

7.

(a)
$$P = 2x + 2y$$
 (A1)

$$=2x+2(4-x^2)$$

so
$$P = -2x^2 + 2x + 8$$
 AG

(b) METHOD 1

EITHER

uses the axis of symmetry of a quadratic (M1)

$$x = -\frac{2}{2(-2)}$$

OR

forms
$$\frac{\mathrm{d}P}{\mathrm{d}x} = 0$$
 (M1)
 $-4x + 2 = 0$

THEN

$$x = \frac{1}{2}$$

substitutes their value of x into $y = 4 - x^2$

$$y = 4 - \left(\frac{1}{2}\right)^2$$
$$y = \frac{15}{4}$$
A1

so the dimensions of rectangle <code>ORST</code> of maximum perimeter are $\frac{1}{2}$ by $\frac{15}{4}$

(M1)

M1

EITHER

substitutes their value of x into $P = -2x^2 + 2x + 8$

$$P = -2\left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right) + 8$$

OR

substitutes their values of x and y into P = 2x + 2y (M1)

$$P = 2\left(\frac{1}{2}\right) + 2\left(\frac{15}{4}\right)$$

$$P = \frac{17}{2}$$
A1

so the maximum perimeter is $\frac{17}{2}$

METHOD 2

attempts to complete the square

$$P = -2\left(x - \frac{1}{2}\right)^2 + \frac{17}{2}$$
 A1

$$x = \frac{1}{2}$$

substitutes their value of x into $y = 4 - x^2$ (M1)

$$y = 4 - \left(\frac{1}{2}\right)^2$$
$$y = \frac{15}{4}$$
A1

so the dimensions of rectangle ORST of maximum perimeter are $\frac{1}{2}$ by $\frac{15}{4}$

$$P = \frac{17}{2}$$

so the maximum perimeter is $\frac{17}{2}$

[6 marks]

(c) substitutes
$$y = 4 - x^2$$
 into $A = xy$ (M1)

$$A = x(4-x^2) (= 4x - x^3)$$
 A1

[2 marks]

$$(d) \qquad \frac{dA}{dx} = 4 - 3x^2$$

attempts to solve their $\frac{dA}{dx} = 0$ for x (M1)

$$4 - 3x^{2} = 0$$
$$\Rightarrow x = \frac{2}{\sqrt{3}} \left(= \frac{2\sqrt{3}}{3} \right) (x > 0)$$
A1

substitutes their (positive) value of x into $y = 4 - x^2$ (M1)

$$y = 4 - \left(\frac{2}{\sqrt{3}}\right)^2$$
$$y = \frac{8}{3}$$
A1

[5 marks]

(e)
$$A = \frac{16}{3\sqrt{3}} \left(= \frac{16\sqrt{3}}{9} \right)$$
 A1

[1 mark]

Total [16 marks]

8.

(a) for example,

a reflection in the x-axis (in the line $y = 0$)	A1
a horizontal translation (shift) 3 units to the left	A1
a vertical translation (shift) down by 1 unit	A1

Note: Award **A1** for each correct transformation applied in a correct position in the sequence. Do not accept use of the "move" for a translation.

Note: Award **A1A1A1** for a correct alternative sequence of transformations. For example,

a vertical translation (shift) down by 1 unit, followed by a horizontal translation (shift) 3 units to the left and then a reflection in the line y = -1.

[3 marks]

(b) range is
$$f(x) \leq -1$$
 A1

Note: Correct alternative notations include $]-\infty,-1]$, $(-\infty,-1]$ or $y \le -1$.

[1 mark]

$$(c) \qquad -1 - \sqrt{y+3} = x \qquad \qquad \mathbf{M1}$$

Note: Award **M1** for interchanging x and y (can be done at a later stage).

$$\sqrt{y+3} = -x - 1(=-(x+1))$$
 A1

$$y+3=\left(x+1\right)^2$$

so
$$f^{-1}(x) = (x+1)^2 - 3(f^{-1}(x) = x^2 + 2x - 2)$$
 A1

domain is
$$x \le -1$$
 A1

Note: Correct alternative notations include $]-\infty,-1]$ or $(-\infty,-1]$.

[5 marks]

M1

M1

(d) the point of intersection lies on the line y = x

EITHER

$$(x+1)^2 - 3 = x$$
 M1

attempts to solve their quadratic equation

for example,
$$(x+2)(x-1)=0$$
 or $x=\frac{-1\pm\sqrt{1^2-4(1)(-2)}}{2}\left(x=\frac{-1\pm 3}{2}\right)$

OR

$$-1 - \sqrt{x+3} = x$$

$$(-1 - \sqrt{x+3})^2 = x^2 \Longrightarrow 2\sqrt{x+3} + x + 4 = x^2$$
substitutes $2\sqrt{x+3} = -2(x+1)$ to obtain $-2(x+1) + x + 4 = x^2$

attempts to solve their quadratic equation

for example,
$$(x+2)(x-1)=0$$
 or $x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-2)}}{2} \left(x = \frac{-1 \pm 3}{2}\right)$

THEN

$$x = -2,1$$
 A1

as $x \le -1$, the only solution is x = -2 **R1**

so the coordinates of the point of intersection are $\left(-2,-2
ight)$

Note: Award **ROA1** if (-2, -2) is stated without a valid reason given for rejecting (1,1).

[5 marks]

A1

Total [15 marks]

(a)	attempts to find $h(0)$	(M1)
	$h(0) = 0.4\cos(0) + 1.8(=2.2)$	
	2.2 (m) (above the ground)	A1
		[2 marks]

(b) EITHER

uses the minimum value of $\cos(\pi t)$ which is -1	M1

0.4(-1)+1.8 (m)

OR

the amplitude of motion is 0.4 (m) and the mean position is 1.8 (m) M1

OR

finds $h'(t) = -0.4\pi \sin(\pi t)$, attempts to solve h'(t) = 0 for t and determines that the minimum height above the ground occurs at t = 1, 3, ... **M1**

0.4(-1)+1.8 (m)

THEN

1.4 (m) (above the ground)

A1

[2 marks]

9.

(c) **EITHER**

the ball is released from its maximum height and returns there a period later	R1
the period is $\frac{2\pi}{\pi}(=2)$ (s)	A1

OR

attempts to solve h(t) = 2.2 for t M1 $\cos(\pi t) = 1$ t = 0, 2, ... A1

THEN

so it takes 2 seconds for the ball to return to its initial position for the first time **AG**

[2 marks]

(d)
$$0.4\cos(\pi t) + 1.8 = 1.8 + 0.2\sqrt{2}$$
 (M1)

$$0.4\cos\left(\pi t\right) = 0.2\sqrt{2}$$

$$\cos(\pi t) = \frac{\sqrt{2}}{2}$$

$$\pi t = \frac{\pi}{4}, \frac{7\pi}{4} \tag{A1}$$

Note: Accept extra correct positive solutions for πt .

$$t = \frac{1}{4}, \frac{7}{4} \quad (0 \le t \le 2)$$

Note: Do not award **A1** if solutions outside $0 \le t \le 2$ are also stated.

the ball is less than $1.8 + 0.2\sqrt{2}$ metres above the ground for $\frac{7}{4} - \frac{1}{4}$ (s)

[5 marks]

(M1)

(e) **EITHER**

attempts to find h'(t)

OR

recognizes that
$$h'(t)$$
 is required (M1)

THEN

$$h'(t) = -0.4\pi \sin\left(\pi t\right) \tag{A1}$$

attempts to evaluate their $h'\left(\frac{1}{3}\right)$ (M1)

$$h'\left(\frac{1}{3}\right) = -0.4\pi \sin\frac{\pi}{3}$$

= $-0.2\pi\sqrt{3} \ (ms^{-1})$ A1

Note: Accept equivalent correct answer forms where $p \in \mathbb{Q}$. For example, $-\frac{1}{5}\pi\sqrt{3}$.

[4 marks]

Total [15 marks]