

Mathematics: analysis and approaches

Practice paper 1 SL

Section A [35 marks]

1.

The derivative of a function f is given by $f'(x) = 3\sqrt{x}$.

Given that f(1) = 3, find the value of f(4).

2.

[Maximum mark: 5]

[Maximum mark: 6]

Solve the equation $2\ln x = \ln 9 + 4$. Give your answer in the form $x = pe^q$ where $p, q \in \mathbb{Z}^+$.

3.

[Maximum mark: 6]

The following table shows the probability distribution of a discrete random variable X where x = 1, 2, 3, 4.

x	1	2	3	4
$\mathbf{P}(X=x)$	k^2	7k + 2	-2k	$3k^2$

Find the value of k, justifying your answer.

4.

[Maximum mark: 6]

The first three terms of an arithmetic sequence are $u_1, 5u_1 - 8$ and $3u_1 + 8$.

(a)	Show that $u_1 = 4$.	[2]
· /	1	•

(b) Prove that the sum of the first *n* terms of this arithmetic sequence is a square number. [4]

Total 80

[Maximum mark: 6]

The functions f and g are defined for $x \in \mathbb{R}$ by f(x) = x - 2 and g(x) = ax + b, where $a, b \in \mathbb{R}$.

Given that $(f \circ g)(2) = -3$ and $(g \circ f)(1) = 5$, find the value of a and the value of b.

[Maximum mark: 6]

Consider the function $f(x) = \frac{3x^2 + bx}{x+2}$ where $x \neq -2$ and $b \in \mathbb{R}$.

Find the set of values for b such that the graph of f has exactly two points with a gradient of zero.

Section B [45 marks]

7.

[Maximum mark: 16]

The following diagram shows the graph of $y = 4 - x^2$, $0 \le x \le 2$ and rectangle ORST. The rectangle has a vertex at the origin O, a vertex on the y- axis at the point R(0, y), a vertex on the x- axis at the point T(x, 0) and a vertex at point S(x, y) on the graph.

Let P represent the perimeter of rectangle ORST.

(a) Show that $P = -2x^2 + 2x + 8$. [2]

(b) Find the dimensions of rectangle ORST that has maximum perimeter and determine the value of the maximum perimeter. [6]

5.

6.

[2]

- Let A represent the area of rectangle ORST.
- (c) Find an expression for A in terms of x.
- (d) Find the dimensions of rectangle ORST that has maximum area. [5]
 (e) Determine the maximum area of rectangle ORST. [1]

8.

[Maximum mark: 14]

The following diagram shows the graph of $y = -1 - \sqrt{x+3}$ for $x \ge -3$.

(a) Describe a sequence of transformations that transforms the graph of $y = \sqrt{x}$ for $x \ge 0$ to the graph of $y = -1 - \sqrt{x+3}$ for $x \ge -3$. [3]

A function f is defined by $f(x) = -1 - \sqrt{x+3}$ for $x \ge -3$.

(b)	State the range of f .	[1]
	-		

- (c) Find an expression for $f^{-1}(x)$, stating its domain. [5]
- (d) Find the coordinates of the point(s) where the graphs of y = f(x) and $y = f^{-1}(x)$ intersect. [5]

[Maximum mark: 15]

The following diagram shows a ball attached to the end of a spring, which is suspended from a ceiling.

The height, h metres, of the ball above the ground at time t seconds after being released can be modelled by the function $h(t) = 0.4\cos(\pi t) + 1.8$ where $t \ge 0$.

(a)	Find the height of the ball above the ground when it is released.	[2]
(b)	Find the minimum height of the ball above the ground.	[2]
(c)	Show that the ball takes 2 seconds to return to its initial height above the ground for the first time.	[2]
(d)	For the first 2 seconds of its motion, determine the amount of time that the ball is less th $1.8+0.2\sqrt{2}$ metres above the ground.	an [5]
(e)	Find the rate of change of the ball's height above the ground when $t = \frac{1}{3}$. Give your answ	er

in the form $p\pi\sqrt{q}$ ms⁻¹ where $p \in \mathbb{Q}$ and $q \in \mathbb{Z}^+$. [4]

9.