

Mathematics: analysis and approaches				
Practice paper 2 SL markscheme	Total 80			
Section A [36 marks] 1.				
$\frac{\sum_{i=1}^{16} x_i}{16} = 14.5$	(M1)			
Note: Award M1 for use of $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$.				
$\Rightarrow \sum_{i=1}^{16} x_i = 232$				
new $\overline{x} = \frac{232 - 9}{15}$	(A1)			
$=14.9\left(=14.8\overline{6},=\frac{223}{15}\right)$				
Note: Do not accept 15.				
	Total [4 marks]			
2.				
(a) EITHER				
uses the arc length formula	(M1)			
arc length is $3(2\pi - heta)$	A1			
OR				
length of arc AB is $3 heta$	A1			
the sum of the lengths of arc AB and arc APB is 6π	A1			
THEN				
so arc APB has length $6\pi - 3\theta$	AG			
	[2 marks]			

(b)	uses the cosine rule	(M1)
	$L^{2} = 3^{2} + 3^{2} - 2(3)(3)\cos\theta$	A1
	so $L = \sqrt{18 - 18\cos\theta}$	AG
		[2 marks]
(c)	$6\pi - 3\theta = 2\sqrt{18 - 18\cos\theta}$	A1
	attempts to solve for $ heta$	(M1)
	$\theta = 2.49$	A1
		[3 marks]
		Total [7 marks]

3.

(a) attempts either graphical or symbolic means to find the value of t when $\frac{dv}{dt} = 0$ (M1)

$$T = 0.465$$
 (s) A1

[2 marks]

(b) attempts to find the value of either
$$s_1 = \int_{0.46494...}^{0.46494...} v \, dt$$
 or $s_2 = \int_{0.46494...}^{1} v \, dt$ (M1)

$$s_1 = 3.02758...$$
 and $s_2 = 3.47892...$ A1A1

Note: Award as above for obtaining, for example, $s_2 - s_1 = 0.45133...$ or

 $\frac{s_2}{s_1} = 1.14907....$

Note: Award a maximum of **M1A1A0FT** for use of an incorrect value of T from part (a).

so $s_2 > s_1$ AG

[3 marks]

Total [5 marks]

4.			
(a)	(i)	<i>r</i> = 0.946 A	2
	(ii)	the value of r shows a (very) strong positive correlation between age and (systolic) blood pressure A [3 marks	
(b)	<i>p</i> = 1	.05 <i>t</i> + 69.3 A1A	L
	Note: Only award marks for an equation. Award A1 for $a = 1.05$ and A1 for $b = 69.3$. Award A1A0 for $y = 1.05x + 69.3$.		
		[2 marks]
(c)	122 (mmHg) (M1)A	
(d)	the re	[2 marks egression equation should not be used because it involves extrapolation A	1
		[1 mark	
		Total [8 marks]

5.

attempts to find an expression for the discriminant, Δ , in terms of k (M1)

$$\Delta = 4 - 4(k-1)(2k-3) (= -8k^2 + 20k - 8)$$
(A1)

Note: Award M1A1 for finding $x = \frac{-2 \pm \sqrt{4 - 4(k - 1)(2k - 3)}}{2(k - 1)}$.

(M1)

attempts to solve $\Delta > 0$ for k

Note: Award **M1** for attempting to solve $\Delta = 0$ for k.

$$\frac{1}{2} < k < 2$$
 A1A1

Note: Award **A1** for obtaining critical values $k = \frac{1}{2}$, 2 and **A1** for correct inequality signs.

[5 marks]

6.

(a) attempts to solve
$$x^2 \sin x = -1 - \sqrt{1 + 4(x+2)^2}$$
 (M1)

Note: Award A1A0 if additional solutions outside the domain are given.

[3 marks]

(b)
$$A = \int_{-2.762...}^{-1.537...} \left(-1 - \sqrt{1 + 4(x+2)^2} - x^2 \sin x \right) dx \text{ (or equivalent)}$$
(M1)(A1)

Note: Award **M1** for attempting to form an integrand involving "top curve" – "bottom curve".

[4 marks]

Total [7 marks]

Section B [44 marks]

7.

(a) uses
$$H_n = H_1 + (n-1)d$$
 with $H_1 = 70\ 000$ and $d = 2400$ (M1)

 $H_n = 70\ 000 + 2400(n-1)$

so
$$H_n = 2400n + 67\ 600$$
 AG

[2 marks]

(b)
$$r = 1.03$$
 A1

[1 mark]

(c) (i) evidence of use of an appropriate table or graph or GDC numerical solve feature to find the value of N such that $J_n > H_n$ (M1)

EITHER

for example, an excerpt from an appropriate table

N	H_n	J_n
11	94 000	94 074

(A1)

OR

for example, use of a GDC numerical solve feature to obtain N = 10.800...

(A1)

Note: Award **A1** for an appropriate graph. Condone use of a continuous graph.

THEN

(ii)
$$H_{11} = 94\ 000(\$)$$
 A1

$$J_{11} = 94\ 074(\$)$$
 A1

Helen's annual salary is $\$94\;000\,$ and Jane's annual salary is $\$94\;074$

Note: Award A1 for a correct H_{11} value and A1 for a correct J_{11} value seen in part (c) (i).

[5 marks]

(d) at the start of the $10{\rm th}\,$ year, Jane will have worked for $9\,$ years so the value of $\,S_{\!9}\,$ is required $\,$ R1 $\,$

Note: Award R1 if S_9 is seen anywhere.

uses
$$S_n = \frac{J_1(r^n - 1)}{r - 1}$$
 with $J_1 = 70\ 000$, $r = 1.03$ and $n = 9$ (M1)

Note: Award **M1** if n = 10 is used.

$$S_{9} = \frac{70\ 000((1.03)^{9}-1)}{1.03-1} = 711\ 137.42...$$
(A1)
= 711\ 137(\$) A1

Jane's total earnings are \$711 137 (correct to the nearest dollar)

[4 marks]

Total [12 marks]

8.

(a)
$$T \sim N(\mu, 8.6^2)$$

 $P(T \le 36.8) = 0.7$ (A1)
states a correct equation, for example, $\frac{36.8 - \mu}{8.6} = 0.5244...$ A1
attempts to solve their equation (M1)
 $\mu = 36.8 - (0.5244...)(8.6) (= 32.2902...)$ A1
the solution to the equation is $\mu = 32.29$, correct to two decimal places AG
[4 marks]
(b) let $t_{0.86}$ be the 86th percentile
attempts to use the inverse normal feature of a GDC to find $t_{0.86}$ (M1)
 $t_{0.86} = 41.6$ (mins) A1
[2 marks]

(c) evidence of identifying the correct area under the normal curve (M1) Note: Award M1 for a clearly labelled sketch. P(T > 30) = 0.605 A1 [2 marks]

(d) let *X* represent the number of people out of the six who take more than 30 minutes to complete the jigsaw puzzle

$$X \sim B(6, 0.6049...)$$
 (M1)

for example,
$$P(X = 5) + P(X = 6)$$
 or $1 - P(X \le 4)$ (A1)

$$P(X \ge 5) = 0.241$$
 A1

[3 marks]

(e) recognizes that $P(T > 30 | T \ge 25)$ is required (M1) Note: Award M1 for recognizing conditional probability. $=\frac{\mathbf{P}(T>30\cap T\geq 25)}{\mathbf{P}(T\geq 25)}$ (A1) $=\frac{P(T>30)}{P(T\geq25)}=\frac{0.6049...}{0.8016...}$ M1 = 0.755A1 [4 marks] Total [15 marks] 9. when $t = 0, T = 100 \implies 100 = T_0 e^0$ (a) **A1** so $T_0 = 100$ AG

[1 mark]

(b) correct substitution of
$$t = 10, T = 70$$
 M1

$$70 = 100e^{-10k}$$
 or $e^{-10k} = \frac{7}{10}$

EITHER

$$-10k = \ln\frac{7}{10}$$

$$\ln\frac{7}{10} = -\ln\frac{10}{7} \text{ or } -\ln\frac{7}{10} = \ln\frac{10}{7}$$

OR

$$e^{10k} = \frac{10}{7}$$
 A1

$$10k = \ln \frac{10}{7}$$

THEN

$$k = \frac{1}{10} \ln \frac{10}{7}$$

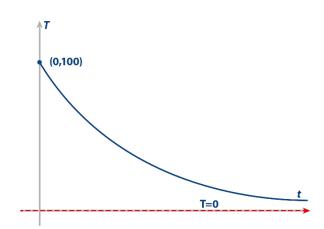
[3 marks]

(c) substitutes
$$t = 15$$
 into T (M1)

$$T = 58.6(^{\circ}C)$$
 A1

[2 marks]

(d)



a decreasing exponential	A1
starting at $ig(0,\!100ig)$ labelled on the graph or stated	A1
$T \rightarrow 0$ as $t \rightarrow \infty$	A1
horizontal asymptote $T=0$ labelled on the graph or stated	A1
Note: Award A0 for stating $y = 0$ as the horizontal asymptote.	

[4 marks]

A1

(e)
$$100e^{-kt} = 50$$
 where $k = \frac{1}{10} \ln \frac{10}{7}$

EITHER

uses an appropriate graph to attempt to solve for t (M1)

OR

manipulates logs to attempt to solve for t e.g. $\ln \frac{1}{2} = \left(-\frac{1}{10}\ln \frac{10}{7}\right)t$ (M1)

$$t = \frac{\ln 2}{\frac{1}{10} \ln \frac{10}{7}} = 19.433...$$

THEN

temperature will be 50° C after 19 minutes and 26 seconds A1

[4 marks]

(f) METHOD 1

substitutes
$$T_0 = 100$$
, $t = 10$ and $T = 70$ into $T = T_0 a^{\frac{1}{10}}$ (M1)

$$70 = 100a^{\frac{10}{10}}$$
 A1

$$a = \frac{7}{10}$$

METHOD 2

$$100a^{\frac{t}{10}} = 100e^{-kt}$$
 where $k = \frac{1}{10}\ln\frac{10}{7}$

EITHER

$$e^{-k} = a^{\frac{1}{10}} \Longrightarrow a = e^{-10k}$$
(M1)

OR

$$a = \left(e^{\left(-\frac{1}{10}\ln\frac{10}{7}\right)t}\right)^{\frac{10}{t}}$$
(M1)

THEN

$$a = e^{-\ln\frac{10}{7}} \left(= e^{\ln\frac{7}{10}}\right)$$
$$a = \frac{7}{10}$$

A1

A1

[3 marks]

Total [17 marks]